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K. Hepp, Zürich, Switzerland
W. Hillebrandt, Garching, Germany
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Romero (Eds.), Current Trends in Relativistic Astro-
physics, Theoretical, Numerical, Observational

Vol.618: M.D. Esposti, S. Graffi (Eds.), The Mathematical
Aspects of Quantum Maps

Vol.619: H.M. Antia, A. Bhatnagar, P. Ulmschneider
(Eds.), Lectures on Solar Physics

Vol.620: C. Fiolhais, F. Nogueira, M. Marques (Eds.), A
Primer in Density Functional Theory

Vol.621: G. Rangarajan, M. Ding (Eds.), Processes with
Long-Range Correlations

Vol.622: F. Benatti, R. Floreanini (Eds.), Irreversible
Quantum Dynamics

Vol.623: M. Falcke, D. Malchow (Eds.), Understanding
Calcium Dynamics, Experiments and Theory

Vol.624: T. Pöschel (Ed.), Granular Gas Dynamics

Vol.625: R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera
(Eds.), Statistical Mechanics of Complex Networks

Vol.626: G. Contopoulos, N. Voglis (Eds.), Galaxies and
Chaos

Vol.627: S.G. Karshenboim, V.B. Smirnov (Eds.), Preci-
sion Physics of Simple Atomic Systems

Vol.628: R. Narayanan, D. Schwabe (Eds.), Interfacial
Fluid Dynamics and Transport Processes

Vol.630: T. Brandes, S. Kettemann (Eds.), Anderson Lo-
calization and Its Ramifications

Vol.631: D. J. W. Giulini, C. Kiefer, C. Lämmerzahl (Eds.),
Quantum Gravity, From Theory to Experimental Search

Vol.632: A. M. Greco (Ed.), Direct and Inverse Methods
in Nonlinear Evolution Equations

Vol.633: H.-T. Elze (Ed.), Decoherence and Entropy in
Complex Systems, Based on Selected Lectures from
DICE 2002

Vol.634: R. Haberlandt, D. Michel, R. Stannarius (Eds.),
Direct and Inverse Methods in Nonlinear Evolution
Equations

Vol.635: D. Alloin, W. Gieren (Eds.), Stellar Candles for
the Extragalactic Distance Scale

Vol.636: R. Livi, A. Vulpiani (Eds.), The Kolmogorov
Legacy in Physics, A Century of Turbulence and Com-
plexity



Preface

I was delighted to learn that R. Livi and A. Vulpiani will edit the book
dedicated to the legacy of Kolmogorov in physics. Also, I was very much
honored when they invited me to write an introduction for this book. Cer-
tainly, it is a very difficult task. Andrei N. Kolmogorov (1903-1987) was a
great scientist of the 20th Century, mostly known as a great mathematician.
He also had classical results in some parts of physics. Physicists encounter
his name at conferences, meetings, and workshops dedicated to turbulence.
He wrote his famous papers on this subject in the early Forties. Soon af-
ter the results became known worldwide they completely changed the way
of thinking of researchers working in hydrodynamics, atmospheric sciences,
oceanography, etc. An excellent book by U. Frisch Turbulence, the Legacy of
A.N. Kolmogorov, published by the Cambridge University Press in 1995 gives
a very detailed exposition of Kolmogorov’s theory. Sometimes it is stressed
that the powerful renormalization group method in statistical physics and
quantum field theory that is based upon the idea of scale invariance has as
one of its roots the Kolmogorov theory of turbulence. I had heard several
times Kolmogorov talking about turbulence and had always been given the
impression that these were talks by a pure physicist. One could easily for-
get that Kolmogorov was a great mathematician. He could discuss concrete
equations of state of real gases and liquids, the latest data of experiments,
etc. When Kolmogorov was close to eighty I asked him about the history of
his discoveries of the scaling laws. He gave me a very astonishing answer by
saying that for half a year he studied the results of concrete measurements. In
the late Sixties Kolmogorov undertook a trip on board a scientific ship par-
ticipating in the experiments on oceanic turbulence. Kolmogorov was never
seriously interested in the problem of existence and uniqueness of solutions
of the Navier-Stokes system. He also considered his theory of turbulence as
purely phenomenological and never believed that it would eventually have a
mathematical framework.

Kolmogorov laid the foundation for a big mathematical direction, now
called the theory of deterministic chaos. In problems of dynamics he always
stressed the importance of dynamical systems generated by differential equa-
tions and he considered this to be the most important part of the theory.
Two great discoveries in non-linear dynamics are connected with the name
of Kolmogorov: KAM-theory where the letter K stands for Kolmogorov and
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Kolmogorov entropy and Kolmogorov systems, which opened new fields in
the analysis of non-linear dynamical systems.

The histories of both discoveries are sufficiently well known. A friend of
mine, who was a physicist once told me that KAM-theory is so natural that
it is strange that it was not invented by physicists. The role of Kolmogorov’s
work on entropy in physics is not less than in mathematics. It is not so well
known that there was a time when Kolmogorov believed in the importance
of dynamical systems with zero entropy and had unpublished notes where he
constructed an invariant of dynamical system expressed in terms of the gro-
wth of entropies of partitions over big intervals of time. Later, Kolmogorov
changed his point of view and formulated a conjecture according to which the
phase space of a typical dynamical system consists up to a negligible subset of
measure zero of invariant tori and mixing components with positive entropy.
To date we have no tools to prove or disprove this conjecture. Also, Kolmo-
gorov’s ideas on complexity grew up from his wowhen Kolmogorov believed
in the importance of dynamical systems with zero entropy and had unpublis-
hed notes where he constructed an invariant of dynamical system expressed
in terms of the growth of entropies of partitions over big intervals of time.
Later, Kolmogorov changed his point of view and formulated a conjecture
according to which the phase space of a typical dynamical system consists
up to a negligible subset of measure zero of invariant tori and mixing compo-
nents with positive entropy. To date we have no tools to prove or disprove this
conjecture. Also, Kolmogorov’s ideas on complexity grew up from his work
on entropy. Physical intuition can be seen in Kolmogorov works on diffusion
processes. One of his classmates at the University was M. A. Leontovich who
later became a leading physicist working on problems of thermo-nuclear fu-
sion. In 1933 Kolmogorov and Leontovich wrote a joint paper on what was
later called Wiener Sausage. Many years later Kolmogorov used his intuition
to propose the answer to the problem of chasing Brownian particle, which
was studied by E. Mishenko and L. Pontrijagin. The joint paper of three
authors gave its complete solution.

Kolmogorov made important contributions to biology and linguistics. His
knowledge of various parts of human culture was really enormous. He loved
music and knew very well poetry and literature. His public lectures like the
one delivered on the occasion of his 60th birthday and another one under the
title, Can a Computer Think? were great social events. For those who ever
met or knew Kolmogorov personally, memories about this great man stay
forever.

Princeton, Yakov G. Sinai
April 2003



Introduction

The centenary of A.N. Kolmogorov, one of the greatest scientists of the 20th
century, falls this year, 2003. He was born in Russia on the 25th of April
1903.1This is typically the occasion for apologetic portraits or hagiographic
surveys about such an intense human and scientific biography.

Various meetings and publications will be devoted to celebrate the work
and the character of the great mathematician. So one could wonder why
pubblishing a book which simply aims at popularizing his major achievements
in fields out of pure mathematics? We are deeply convinced that Kolmogo-
rov’s contributions are the cornerstone over which many modern research
fields, from physics to computer science and biology, are based and still keep
growing. His ideas have been transmitted also by his pupils to generations
of scientists. The aim of this book is to extend such knowledge to a wider
audience, including cultivated readers, students in scientific disciplines and
active researchers.

Unfortunately, we never had the opportunity for sharing, with those who
met him, the privilege of discussing and interacting with such a personality.
Our only credentials for writing about Kolmogorov come from our scienti-
fic activity, which has been and still now is mainly based on some of his
fundamental contributions.

In this book we do not try to present the great amount, in number and
quality, of refined technical work and intuitions that Kolmogorov devoted
to research in pure mathematics, ranging from the theory of probability to
stochastic processes, theory of automata and analysis. For this purpose we
address the reader to a collection of his papers,2 which contains also illumi-
nating comments by his pupils and collaborators. Here we want to pursue the
goal of accounting for the influence of Kolmogorov’s seminal work on several

1 A short biography of Kolmogorov can be found in P.M.B. Vitanyi, CWI Quart-
erly 1, page+3 (1988),
(http://www.cwi.nl/∼paulv/KOLMOGOROV.BIOGRAPHY.html); a detailed
presentation of the many facets of his scientific activities is contained in Kolmo-
gorov in Perspective (History of Mathematics, Vol. 20, American Mathematical
Society, 2000).

2 V.M. Tikhomirov and A.N. Shiryayev (editors): “Selected works of A.N. Kolmo-
gorov”,, Vol.1, 2 and 3, Kluwer Academic Publishers, Dordrecht, Boston London
(1991)
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modern research fields in science, namely chaos, complexity, turbulence, ma-
thematical description of biological and chemical phenomena (e.g. reaction
diffusion processes and ecological communities).

This book is subdivided into four parts: chaos and dynamical systems
(Part I), algorithmic complexity and information theory (Part II), turbulence
(Part III) and applications of probability theory (Part IV). A major effort
has been devoted to point out the importance of Kolmogorov’s contribution
in a modern perspective. The use of mathematical formulae is unavoidable
for illustrating crucial aspects. At least part of them should be accessible also
to readers without a specific mathematical background.

The issues discussed in the first part concern quasi–integrability and chao-
tic behaviour in Hamiltonian systems. Kolmogorov’s work, together with the
important contributions by V.I. Arnol’d and J. Moser, yielded the celebrated
KAM theorem. These pioneering papers have inspired many analytical and
computational studies applied to the foundations of statistical mechanics, ce-
lestial mechanics and plasma physics. An original and fruitful aspect of his
approach to deterministic chaos came from the appreciation of the theoreti-
cal relevance of Shannon’s information theory. This led to the introduction
of what is nowadays called “Kolmogorov–Sinai entropy”. This quantity mea-
sures the amount of information generated by chaotic dynamics.

Moreover, Kolmogorov’s complexity theory, which is at the basis of mo-
dern algorithmic information theory, introduces a conceptually clear and well
defined notion of randomness, dealing with the amount of information con-
tained in individual objects. These fundamental achievements crucially con-
tributed to the understanding of the deep relations among the basic concepts
at the heart of chaos, information theory and “complexity”. Nonetheless, it
is also worth mentioning the astonishingly wide range of applications, from
linguistic to biology, of Kolmogorov’s complexity. These issues are discussed
in the second part.

The third part is devoted to turbulence and reaction-diffusion systems.
With great physical intuition, in two short papers of 1941 Kolmogorov deter-
mined the scaling laws of turbulent fluids at small scale. His theory (usually
called K41) was able to provide a solid basis to some ideas of L.F. Richardson
and G.I. Taylor that had never been brought before to a proper mathematical
formalization. We can say that still K41 stays among the most important con-
tributions in the longstanding history of the theory of turbulence. The second
crucial contribution to turbulence by Kolmogorov (known as K62 theory) ori-
ginated with experimental findings at the Moscow Institute of Atmospheric
Physics, created by Kolmogorov and Obukhov. K62 was the starting point
of many studies on the small scale structure of fully developed turbulence,
i.e. fractal and multifractal models. Other fascinating problems from different
branches of science, like “birth and death” processes and genetics, raised Kol-
mogorov’s curiosity. With N.S. Piscounov and I.V. Petrovsky, he proposed a
mathematical model for describing the spreading of an advantageous gene – a
problem that was also considered independently by R.A. Fisher. Most of the
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modern studies ranging from spreading of epidemics to chemical reactions in
stirred media and combustion processes can be traced back to his work.

In the last part of this book some recent developments and applications
of the theory of probability are presented. One issue inspired by K62 is the
application of “wild” stochastic processes (characterized by “fat tails” and
intermittent behaviour), to the study of the statistical properties of financial
time series. In fact, in most cases the classical central limit theorem cannot be
applied and one must consider stable distributions. The very existence of such
processes opens questions of primary importance for renormalization group
theory, phase transitions and, more generally, for scale invariant phenomena,
like in K41.

We are indebted with the authors, from France, Germany, Italy, Spain,
and Russia, who contributed to this book, that was commissioned with a
very tight deadline. We were sincerely impressed by their prompt response,
and effective cooperation.

We warmly thank Prof. Ya.G. Sinai, who agreed to outline in the Preface
the character of A.N. Kolmogorov.

A particular acknowledgement goes to Dr. Patrizia Castiglione (staff of
Belin Editions): this book has been made possible thanks to her enthusiastic
interest and professionality.

Florence and Rome, Roberto Livi and Angelo Vulpiani
Spring 2003
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Abstract. Two limits of Newtonian mechanics were worked out by Kolmogorov.
On one side it was shown that in a generic integrable Hamiltonian system, regular
quasi-periodic motion persists when a small perturbation is applied. This result,
known as Kolmogorov-Arnold-Moser (KAM) theorem, gives mathematical bounds
for integrability and perturbations. On the other side it was proven that almost
all numbers on the interval between zero and one are uncomputable, have positive
Kolmogorov complexity and, therefore, can be considered as random. In the case of
nonlinear dynamics with exponential (i.e. Lyapunov) instability this randomnesss,
hidden in the initial conditions, rapidly explodes with time, leading to unpredictable
chaotic dynamics in a perfectly deterministic system. Fundamental mathematical
theorems were obtained in these two limits, but the generic situation corresponds to
the intermediate regime between them. This intermediate regime, which still lacks
a rigorous description, has been mainly investigated by physicists with the help
of theoretical estimates and numerical simulations. In this contribution we outline
the main achievements in this area with reference to specific examples of both low-
dimensional and high-dimensional dynamical systems. We shall also discuss the
successes and limitations of numerical methods and the modern trends in physical
applications, including quantum computations.

1 A General Perspective

At the end of the 19th century H. Poincaré rigorously showed that a generic
Hamiltonian system with few degrees of freedom described by Newton’s equa-
tions is not integrable [1]. It was the first indication that dynamical motion
can be much more complicated than simple regular quasi–periodic behavior.
This result puzzled the scientific community, because it is difficult to reconcile
it with Laplace determinism, which guarantees that the solution of dynamical
equations is uniquely determined by the initial conditions. The main deve-
lopments in this direction came from mathematicians; they were worked out
only in the middle of 20th century by A.N. Kolmogorov and his school. In
the limiting case of regular integrable motion they showed that a generic
nonlinear pertubation does not destroy integrability. This result is nowadays
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formulated in the well–known Kolmogorov–Arnold–Moser (KAM) theorem
[2]. This theorem states that invariant surfaces in phase space, called tori,
are only slightly deformed by the perturbation and the regular nature of the
motion is preserved. The rigorous formulation and proof of this outstanding
theorem contain technical difficulties that would require the introduction of
refined mathematical tools. We cannot enter in such details here. In the next
we shall provide the reader a sketch of this subject by a simple physical illu-
stration. More or less at the same time, Kolmogorov analyzed another highly
nontrivial limit, in which the dynamics becomes unpredictable, irregular or,
as we say nowadays, chaotic [3]. This was a conceptual breakthrough, which
showed how unexpectedly complicated the solution of simple deterministic
equations can be. The origin of chaotic dynamics is actually hidden in the
initial conditions. Indeed, according to Kolmogorov and Martin-Löf [3,4], al-
most all numbers in the interval [0, 1] are uncomputable. This means that
the length of the best possible numerical code aiming at computing n digits
of such a number increases proportionally to n, so that the number of code
lines becomes infinite in the limit of arbitrary precision. For a given n, we can
define the number of lines l of the program that is able to generate the bit
string. If the limit of the ratio l/n as n → ∞ is positive, then the bit string
has positive Kolmogorov complexity. In fact, in real (computer) life we work
only with computable numbers, which have zero Kolmogorov complexity and
zero–measure on the [0,1] interval. On the other hand, Kolmogorov numbers
contain infinite information and their digits have been shown to satisfy all
tests on randomness. However, if the motion is stable and regular, then this
randomness remains confined in the tails of less significant digits and it has
no practical effect on the dynamics. Conversely, there are systems where the
dynamics is unstable, so that close trajectories separate exponentially fast in
time. In this case the randomness contained in the far digits of the initial
conditions becomes relevant, since it extends to the more significant digits,
thus determining a chaotic and unpredictable dynamics. Such chaotic mo-
tion is robust with respect to generic smooth perturbations [5]. A well known
example of such a chaotic dynamics is given by the Arnold “cat” map

xt+1 = xt + yt mod 1
yt+1 = xt + 2yt mod 1 , (1)

where x and y are real numbers in the [0, 1] interval, and the subscript t =
0, 1, . . . indicates discrete time. The transformation of the cat’s image after
six iterations is shown in Fig. 1. It clearly shows that the cat is chopped
in small pieces, that become more and more homogeneously distributed on
the unit square. Rigorous mathematical results for this map ensure that the
dynamics is ergodic and mixing [6,7]. Moreover, it belongs to the class of K-
systems, which exhibit the K-property, i.e. they have positive Kolmogorov-
Sinai entropy [8–10]. The origin of chaotic behavior in this map is related
to the exponential instability of the motion, due to which the distance δr(t)
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Fig. 1. Arnold “cat” map: six iterations of map (1) from left to right and from top
to bottom

between two initially close trajectories grows exponentially with the number
of iterations t as

δr(t) ∼ exp(ht) δr(0). (2)

Here, h is the Kolmogorov-Sinai (KS) entropy (the extension of these con-
cepts to dynamical systems with many degrees of freedom will be discussed
in Sect. 5). For map (1) one proves that h = ln[(3+

√
5)/2] ≈ 0.96 so that for

δr(0) ∼ O(10−16), approximately at t = 40, δr(40) ∼ O(1). Hence, an orbit
iterated on a Pentium IV computer in double precision will be completely dif-
ferent from the ideal orbit generated by an infinite string of digits defining the
initial conditions with infinite precision. This implies that different computers
will simulate different chaotic trajectories even if the initial conditions are the
same. The notion of sensitive dependence on initial conditions, expressed in
(2), is due to Poincaré [11] and was first emphasized in numerical experi-
ments in the seminal papers by Lorenz [12], Zaslavsky and Chirikov [13] and
Henon-Heiles [14]. However, the statistical, i.e. average, properties associated
with such a dynamics are robust with respect to small perturbations [5]. It is
worth stressing that this rigorous result does not apply to non–analytic per-
turbations in computer simulations due to round–off errors. Nonetheless, all
experiences in numerical simulations of dynamical chaos confirm the stability
of statistical properties in this case as well, even if no mathematical rigorous
proof exists. Physically, the appearance of statistical properties is related to
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Fig. 2. Sinai billiard: the disc is an elastic scatterer for a point mass particle which
freely moves between collisions with the disc. The dashed contour lines indicate
periodic boundary conditions: a particle that crosses them on the right (top) reap-
pears with the same velocity on the left (bottom) (the motion develops topologically
into a torus)

the decay in time of correlation functions of the dynamical variables, which
for map (1) is exponential.

These results are the cornerstones of the origin of statistical behavior in
deterministic motion, even for low–dimensional dynamical systems. However,
a K-system (like Arnold cat map (1)) is not generic. Significant progress to-
wards the description of generic physical systems was made by Sinai [15], who
proved the K-property for the billiard shown in Fig. 2. It was also proved by
Bunimovich [16] that the K-property persists also for “focusing” billiards, like
the stadium (see Fig. 3). However, physics happens to be much richer than
basic mathematical models. As we will discuss in the following sections, the
phase space of generic dynamical systems (including those with many degrees
of freedom) contains intricately interlaced chaotic and regular components.
The lack of rigorous mathematical results in this regime left a broad possi-
bility for physical approaches, involving analytical estimates and numerical
simulations.

2 Two Degrees of Freedom: Chirikov’s Standard Map

A generic example of such a chaotic Hamiltonian system with divided phase-
space is given by the Chirikov standard map [17,18]:

It+1 = It +K sin(θt) ; θt+1 = θt + It+1 (mod 2π) . (3)

In this area-preserving map the conjugated variables (I, θ) represent the ac-
tion I and the phase θ. The subscript t indicates time and takes non-negative
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Fig. 3. Bunimovich or “stadium” billiard: the boundary acts as an elastic wall for
colliding point mass particles, which otherwise move freely

integer values t = 0, 1, 2, . . . . This mapping can be derived from the motion
of a mechanical system made of a planar rotor of inertia M and length l that
is periodically kicked (with period τ) with an instantaneous force of strength
K/l. Angular momentum I will then vary only at the kick, the variation
being given by ∆I = (K/l)l sin θ, where θ is the in-plane angle formed by
the rotor with a fixed direction when the kick is given. Solving the equations
of motion, one obtains map (3) by relating the motion after the kick to the
one before (having put τ/M = 1). Since this is a forced system, its energy
could increase with time, but this typically happens only if the perturba-
tion parameter K is big enough. Map (3) displays all the standard behaviors
of the motion of both one-degree-of-freedom Hamiltonians perturbed by an
explicit time-dependence (so-called 1.5 degree of freedom systems) and two-
degree-of-freedom Hamiltonians. The extended phase-space has dimension
three in the former case and four in the latter. The phase-space of map (3)
is topologically the surface of a cylinder, whose axial direction is along I
and extends to infinity, and whose orthogonal direction, running along cir-
cumferences of unit radius, displays the angle θ. For K = 0 the motion is
integrable, meaning that all trajectories are explicitly calculable and given
by It = I0, θt = θ0 + tI0(mod 2π). If I0/2π is the rational p/q (with p and
q integers), every initial point closes onto itself at the q-th iteration of the
map, i.e. it generates a periodic orbit of period q. A special case is I0 = 0,
which is a line made of an infinity of fixed points, a very degenerate situa-
tion indeed. All irrationals I0/(2π), which densely fill the I axis, generate
quasi-periodic orbits: As the map is iterated, the points progressively fill the
line I = const. Hence, at K = 0 the motion is periodic or quasi-periodic.
What happens if a small perturbation is switched on, i.e. K �= 0, but small?
This is described by two important results: the Poincaré-Birkhoff fixed point
theorem (see Chap. 3.2b of [19]) and the Kolmogorov-Arnold-Moser (KAM)
theorem [2](see also the contribution by A. Celletti et al. in this volume).

The Poincaré-Birkhoff theorem states that the infinity of periodic orbits
issuing from rational I0/(2π) values collapse onto two orbits of period q, one
stable (elliptic) and the other unstable (hyperbolic). Around the stable orbits,



8 R. Livi, S, Ruffo, and D. Shepelyansky

Fig. 4. Phase-space of the Chirikov standard map (3) in the square (2π × 2π) for
K = 0.5

“islands” of stability form, where the motion is quasi-periodic. The biggest
of such islands is clearly visible in Fig. 4 and has at the center the elliptic
fixed point (I = 0, θ = π) which originates from the degenerate line of fixed
points I = 0 as soon as K �= 0.

The KAM theorem states that most of the irrational I0/2π initial values
generate, at small K, slightly deformed quasi-periodic orbits called KAM-
tori. Traces of the integrability of the motion survive the finite perturbations.
Since irrationals are dense on a line, this is the most generic situation when
K is small. This result has been transformed into a sort of paradigm: slight
perturbations of an integrable generic Hamiltonian do not destroy the main
features of integrability, which are represented by periodic or quasi-periodic
motion. This is also why the KAM result was useful to Chirikov and coworkers
to interpret the outcome of the numerical experiment by Fermi, Pasta and
Ulam, as we discuss in Sects. 3 and 4.

There is still the complement to the periodic and quasi-periodic KAM
motion to be considered! Even at very small K, a tiny but non vanishing
fraction of initial conditions performs neither a periodic nor a quasi-periodic
motion. This is the motion that has been called “chaotic”, because, although
deterministic, it has the feature of being sensible to the smallest perturbations
of the initial condition [11–14,18].

Let us summarize all of these features by discussing the phase-space struc-
ture of map (3), as shown for three different values of K: K = 0.5 (Fig. 4),
K = Kg = 0.971635 . . . (Fig. 5) and K = 2.0 (Fig. 6).

For K = 0.5, successive iterates of an initial point θ0, I0 trace lines on
the plane. The invariant curves I = const, that fill the phase-space when
K = 0, are only slightly deformed, in agreement with the KAM theorem.
A region foliated by quasi-periodic orbits rotating around the fixed point
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Fig. 5. Same as Fig. 4 for K = Kg = 0.971635...

Fig. 6. Same as Fig. 4 for K = 2

(I = 0, θ = π) appears; it is called “resonance”. Resonances of higher order
appear around periodic orbits of longer periods. Their size in phase-space is
smaller, but increases with K. Chaos is bounded in very tiny layers. Due to
the presence of so many invariant curves, the dynamics in I remains bounded.
Physically, it means that although work is done on the rotor, its energy does
not increase. A distinctive quantity characterizing a KAM torus is its rotation
number, defined as

r = lim
t→∞

θt − θ0
2πt

. (4)
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One can readily see that it equals the time averaged action < It/(2π) >t

of the orbit, and its number theoretic properties, namely its “irrationality”,
are central to the dynamical behavior of the orbit. Numerical simulations
indicate that for model (3) the most robust KAM torus corresponds to the
“golden mean” irrational rotation number r = rg = (

√
5 − 1)/2. Let us recall

some number theoretic properties. Let ai be positive integers and denote by

1

a1 +
1

a2 + · · ·
≡ [a1, a2, . . . ] (5)

the continued fraction representation of any real number smaller than one.
It turns out that rg contains the minimal positive integers in the continued
fraction, rg = [1, 1, 1, . . . ]. Indeed, this continued fraction can be resummed
by solving the algebraic equation r−1

g = 1 + rg, which clearly has two so-
lutions that correspond to two maximally robust KAM tori. The “golden
mean” rotation number rg corresponds to the “most irrational” number; in
some nontrivial sense, it is located as far as possible from rationals. Rational
winding numbers correspond to “resonances”, and are the major source of
perturbation of KAM curves. It is possible to study numerically the stabi-
lity of periodic orbits with the Fibonacci approximation to the golden mean
value rn = pn/qn → rg with qn = 1, 2, 3, 5, 8, 13 . . . and pn = qn−1. This
approach has been used by Greene and MacKay and it has allowed them to
determine the critical value of the perturbation parameter Kg = 0.971635...
at which the last invariant golden curve is destroyed [20,21]. The phase-space
of map (3) at K = Kg is shown in Fig. 5. It is characterized by a hierar-
chical structure of islands of regular quasi-periodic motion centered around
periodic orbits with Fibonacci winding number surrounded by a chaotic sea.
Such a hierarchy has been fully characterized by MacKay [21] for the Chi-
rikov standard map using renormalization group ideas. A similar study had
been conducted by Escande and Doveil [22] for a “paradigm” 1.5-degrees
of freedom Hamiltonian describing the motion of a charged particle in two
longitudinal waves. Recently, these results have been made rigorous[23], by
implementing methods very close to the Wilson renormalization group [24].

For K > Kg the last KAM curve is destroyed and unbounded diffusion
in I takes place. With the increase of K, the size of stable islands decreases
(see Fig. 6) and for K � 1, the measure of integrable components becomes
very small. In this regime of strong chaos the values of the phases between
different map iterations become uncorrelated and the distribution function
f(I) of trajectories in I can be approximately described by a Fokker-Planck
equation

∂f

∂t
=
D

2
∂2f

∂I2 , (6)

where D =< (It+1 − It)2 >t is the diffusion constant. For K � 1, D ≈ K2/2
(so-called quasi-linear theory). Thus, due to chaos, deterministic motion can
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be described by a statistical diffusive process. As a result, the average square
action grows linearly with the number of iterations < I2

t >= I2
0 + Dt for

large t.
From the analytical viewpoint the onset of chaos described above has been

first obtained by Chirikov on the basis of the resonance-overlap criterion [25].
Let us come back to the representation of the Chirikov standard map in terms
of the equations of motion of the Hamiltonian of the kicked rotor

H(I, θ, t) = I2/2 +K cos θ
∑

m

δ(t−m) = I2/2 +K
∑

m

cos(θ − 2πmt) ,

(7)

where δ(t) is the Dirac δ-function and the sum represents the action of the
periodic kicks. The expansion of the periodic δ-function in Fourier series
leads to the second expression for the Hamiltonian (7), where the sum runs
over all positive/negative integers m. This second form of the Hamiltonian
clearly shows the importance of resonances, where the derivative of the phase
θ is equal to the external driving frequency θ̇ = Im = 2πm. Assuming that
the perturbation is weak (K 	 1), we obtain that, in the vicinity of the
resonant value of the action, the dynamics is approximately described by the
Hamiltonian of a pendulum Hp = (I−Im)2/2+K cosφ where φ = θ−2πmt is
the resonant phase (with respect to the usual pendulum, this one has gravity
pointing upward). Indeed, in the first approximation, all non-resonant terms
can be averaged out so that the slow motion in the vicinity of Im becomes
similar to the dynamics of a pendulum, given by the term with m = 0. The
pendulum has two qualitatively different types of motion: phase rotations
for an energy Hp > K and phase oscillations for an energy Hp < K. In the
phase-space (I, θ) these two motions are separated from each other by the
separatrix curve I − Im = ±2

√
K sin(φ/2) which at Hp = K starts from

the unstable equilibrium point at φ = 0. Thus, the size of the separatrix is,
∆ωr = ∆I = 4

√
K, while the distance between the resonances φ̇ = Ωm =

2πm is Ωd = Ωm+1 −Ωm = 2π. Two close unperturbed nonlinear resonances
overlap when the size of the resonance becomes larger than the distance
between them, ∆ωr > Ωd. Above this resonance-overlap border, a trajectory
can move from one resonance to another and the motion becomes chaotic
on large scale (as we have commented above, chaos is present even for the
smaller K values, but it is restricted to thin layers). In the case of the map
(3) this simple criterion gives the critical parameter Kc = π2/4 ≈ 2.5,larger
than the real value Kg = 0.971635... determined by the Greene method. In
fact, this simple criterion does not take into account the effects of secondary
order resonances and of the finite size of chaotic layers appearing around
the separatrix. Considering both effects reduces the border approximately
by a factor 2.5 [18]. Thus, in the final form, the Chirikov resonance-overlap
criterion can be written as

Kc ≈ 2.5(∆ωr/Ωd)2 > 1 . (8)
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Invented by Chirikov in 1959, this physical criterion remains the main ana-
lytical tool for determining the chaos border in deterministic Hamiltonian
systems. When Chirikov presented his criterion to Kolmogorov, the latter
said: “one should be a very brave young man to claim such things!”. Indeed,
a mathematical proof of the criterion is still lacking and there are even known
counterexamples of nonlinear systems with a hidden symmetry, such as the
Toda lattice (see Chap. 1.3c of [19]), where the dynamics remains integra-
ble for K � Kc. However, such systems with a hidden symmetry are quite
rare and specific, while for generic Hamiltonian systems the criterion works
nicely and determines very well the border for the onset of chaos. An exten-
sion and a deep understanding of Chirikov criterion in the renormalization
group approach has allowed an improvement and its extensive application
to systems with many degrees of freedom [26]. Chirikov resonance overlap
criterion finds also applications in such diverse physical systems as particles
in magnetic traps [25,18,27], accelerator physics [28], highly excited hydrogen
atoms in a microwave field [29], mesoscopic resonance tunneling diodes in a
tilted magnetic field [30].

In fact, the Chirikov standard map gives a local description of interacting
resonances, assuming that resonance amplitudes slowly change with action
I. This is the main reason why this map finds such diverse applications. For
example, a modest modification of the kick function f(θ) = sin θ and the
dispersion relation θt+1 = θt + It

−3/2 in (3) is sufficient to give a description
of the dynamics of the Halley’s comet in the solar system [31].

For small perturbations, chaos initially appears in a chaotic layer around
the separatrix of a nonlinear resonance. Some basic questions about the effects
of nonlinear perturbations in the vicinity of the separatrix were first addressed
by Poincaré [1], who estimated the angle of separatrix splitting. The width
of the chaotic layer was determined by Chirikov on the basis of the overlap
criterion (8) in [17,18]. In fact, for small perturbations, e.g. K in map(3), the
external frequency ω is much larger than the resonance oscillation frequency
ω0. In such a case, the relative energy w of a trajectory randomly fluctuates
inside the chaotic separatrix layer whose width is exponentially small, e.g. for
the map (3) |w| < ws ≈ 8πλ3 exp(−πλ/2), where λ = ω/ω0 = 2π/

√
K � 1.

Even for K = 0.5 the width of the layer is very small and it is hardly visible
in Fig. 4 (ws ≈ 0.015). It is interesting to note that the dynamics inside the
chaotic layer is described by a simple separatrix map, which is similar to the
map (3): yt+1 = yt + sinxt, xt+1 = xt − λ ln |yt+1| where y = λw/ws and x
is the phase of the rotation [18]. The width of the separatrix layer increases
with K as well as the size of primary and secondary resonances. At some
critical value Kc the last invariant curve becomes critical. For map (3) Kc =
Kg = 0.971635.... For K > Kg the golden invariant curve is destroyed and it
is replaced by an invariant Cantor set (”cantorus”) which allows trajectories
to propagate diffusively in action I. Rigorous mathematical results prove the
existence of the cantori [32–34]. However, in spite of fundamental advances
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in ergodic theory [6,7], a rigorous proof of the existence of a finite measure
set of chaotic orbits for map (3) is still missing, even for specific values of K.

The absence of diffusion for small perturbations is typical of 1.5 and 2
degrees of freedom systems. For three or more degrees of freedom, resonances
are no longer separated by invariant KAM curves and form a connected web
that is dense in action space. Hence, chaotic motion along resonances can
carry the orbit arbitrarily close to any region of the phase space compatible
with energy conservation. This mechanism is called Arnold diffusion, since
Arnold [35] first described its existence. Arnold diffusion is present also for
negligible perturbations, but its rate becomes vanishingly small. A theoretical
calculation of this rate was first performed by Chirikov[18] and later refined
by several authors (see chapter 6 of [19] for a review). Beautiful illustrations
of the Arnold web have been obtained by Laskar through the use of frequency
analysis [36].

While the local structure of divided phase space is now well understood,
the statistical properties of the dynamics remain unclear, in spite of the sim-
plicity of these systems. Among the most important statistical characteristics
is the decay of the time correlation function C(τ) in time and the statistics
of Poincaré recurrences P (τ). The latter is defined as P (τ) = Nτ/N , where
Nτ is the number of recurrences in a given region with recurrence time t > τ
and N is the total number of recurrences. According to the Poincaré theorem
(for an easy illustration see Chap. 7.1.3 of [37]), an orbit of a Hamiltonian
system always returns sufficiently close to its initial position. However, the
statistics of these recurrences depends on the dynamics and is different for in-
tegrable and chaotic motion. In the case of strong chaos without any stability
islands (e.g. the Arnold cat map (1)), the probability P (τ) decays exponenti-
ally with τ . This case is similar to the coin flipping, where the probability to
stay head for more than τ flips decays exponentially. The situation turns out
to be different for the more general case of the dynamics inside the chaotic
component of an area-preserving map with divided phase space. Studies of
P (τ) for such a case showed that, at a large times, recurrences decay with
a power law P (τ) ∝ 1/τp with an exponent p ≈ 1.5 (see [38] and Fig. 7).
Investigations of different maps also indicated approximately the same value
of p, even if it was remarked that p can vary from map to map, and that the
decay of P (τ) can even oscillate with ln τ . This result is of general impor-
tance. It can also be shown that it determines the correlation function decay
C(τ) via the relation C(τ) ∝ τP (τ). The statistics of P (τ) is also well suited
for numerical simulations, due to the natural property P (τ) > 0 and to its
statistical stability. Such a slow decay of Poincaré recurrences is related to
the sticking of a trajectory near a critical KAM curve, which restricts the
chaotic motion in phase space [38]. Indeed, when approaching the critical
curve with the border rotation number rg , the local diffusion rate Dn goes
to zero as Dn ∼ |rg − rn|α/2 ∼ 1/qα

n with α = 5, where rn = pn/qn are the
rational convergents for rg as determined by the continued fraction expan-
sion. The theoretical value α = 5 follows from a resonant theory of critical
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Fig. 7. Poincaré recurrences P (τ) in the Chirikov standard map (3) at K = Kg

(dashed curve) and in the separatrix map (see text) with the critical golden bound-
ary curve at λ = 3.1819316 (full curve). The return line is I = y = 0. The dotted
straight line shows the power-law decay P (τ) ∝ 1/τp with p = 1.5. [From [38]]

invariant curves [21,38] and is confirmed by numerical measurements of the
local diffusion rate in the vicinity of the critical golden curve in the Chiri-
kov standard map [39]. Such a decrease of the diffusion rate near the chaos
border would give the exponent p = 3, if everything was determined by the
local properties of principal resonances pn/qn. However, the value p = 3 is
significantly different from the numerically found value p ≈ 1.5 (see [38,40]
and Fig. 7). At the same time, the similarity of the decay of P (τ) in two very
different maps with critical golden curves is in favor of the universal decay
of Poincaré recurrences; it is possible that the expected value p = 3 will be
reached at very large τ .

3 Many Degrees of Freedom: The Numerical
Experiment of Fermi, Pasta, and Ulam

At the beginning of the 50’s one of the first digital computers, MANIAC 1,
was available at Los Alamos National Laboratories in the US. It had been
designed by the mathematician J. von Neumann for supporting investigations
in several research fields, where difficult mathematical problems could not be
tackled by rigorous proofs1. Very soon, Enrico Fermi realized the great po-
tential of this revolutionary computational tool for approaching some basic
physical questions, that had remained open for decades. In particular, MA-
NIAC 1 appeared to be suitable for analyzing the many aspects of nonlinear
problems, that could not be accessible to standard perturbative methods.
Thanks to his deep physical intuition, Fermi pointed out a crucial problem,
1 It should be mentioned that MANIAC 1 was mainly designed for supporting

research in nuclear physics, which yielded the production of the first atomic
bomb.
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Fig. 8. The FPU chain of oscillators coupled by nonlinear springs

that had been raised already in 1914 by the dutch physicist P. Debye. He
had suggested that the finiteness of thermal conductivity in crystals should
be due to the nonlinearities inherent in the interaction forces acting among
the constituent atoms. Although experimental results seemed to support such
a conjecture, a convincing explanation based on a microscopic theory was still
lacking fourty years later2. In collaboration with the mathematician S. Ulam
and the physicist J. Pasta, Fermi proposed to integrate, on the MANIAC 1
the dynamical equations of the simplest mathematical model of an anharmo-
nic crystal: a chain of harmonic oscillators coupled by nonlinear forces (see
Fig. 8). In practice, this is described by a classical Hamiltonian of the form

H =
N∑

i=1

p2
i

2m
+
ω2

2
(qi+1 − qi)2 +

ν

n
(qi+1 − qi)n, (9)

where the integer space index i labels the oscillators, whose displacements
with respect to equilibrium positions and momenta are qi and pi, respectively.
The integer exponent n > 2 identifies the nonlinear potential, whose strength
is determined by the coupling parameter ν. For the sake of simplicity, Fermi,
Pasta and Ulam considered the cases n = 3, 4, with ν denoted as α and β,
respectively (from which the names “α” and “β” models).

The complex interactions among the constituent atoms or molecules of
a real solid are reduced to harmonic and nonlinear springs, acting between
nearest-neighbor equal–mass particles. Nonlinear springs apply restoring for-
ces proportional to the cubic or quartic power of the elongation of particles
from their equilibrium positions3. Despite such simplifications, the basic in-
gredients that one can reasonably conjecture to be responsible for the main
physical effect (i.e. the finiteness of thermal conductivity) had been taken
into account in the model.

In this form the problem was translated into a program containing an
integration algorithm that MANIAC 1 could efficiently compute. It should
be stressed that further basic conceptual implications of this numerical expe-
riment were known from the very beginning to Fermi and his collaborators.
2 Only recently further progress has been made in the understanding of the role

of nonlinearity and disorder, together with spatial constraints, in determining
transport properties in models of solids and fluids; for a review see [41].

3 These simplifications can be easily justified by considering that any interaction
between atoms in a crystal can be well approximated by such terms, for ampli-
tudes of atomic oscillations much smaller than the interatomic distance: this is
the typical situation for real solids at room temperature and pressure.
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In fact, they also expected to verify a common belief that had never been
amened to a rigorous mathematical proof: In an isolated mechanical system
with many degrees of freedom (i.e. made of a large number of atoms or mole-
cules), a generic nonlinear interaction among them should eventually yield
equilibrium through “thermalization” of the energy. On the basis of physical
intuition, nobody would object to this expectation if the mechanical system
starts its evolution from an initial state very close to thermodynamic equi-
librium. Nonetheless, the same should also be observed for an initial state
where the energy is supplied to a small subset of oscillatory modes of the
crystal; nonlinearities should make the energy flow towards all oscillatory
modes, until thermal equilibrium is eventually reached. Thermalization cor-
responds to energy equipartition among all the modes4. In physical terms,
this can be considered as a formulation of the “ergodic problem”. This was
introduced by the austrian physicist L. Boltzmann at the end of the 19th

century to provide a theoretical explanation of the apparently paradoxical
fact, namely that

the time–reversible microscopic dynamics of a gas of hard spheres should
naturally evolve on a macroscopic scale towards thermodynamic equilibrium,
thus yielding the “irreversible” evolution compatible with the second principle
of thermodynamics.

In this perspective, the FPU5 numerical experiment was intended to test
also if and how equilibrium is approached by a relatively large number of
nonlinearly coupled oscillators, obeying the classical laws of Newtonian me-
chanics. Furthermore, the measurement of the time interval needed for ap-
proaching the equilibrium state, i.e. the ”relaxation time” of the chain of
oscillators, would have provided an indirect determination of thermal con-
ductivity6.

In their numerical experiment FPU considered relatively short chains, up
to 64 oscillators7, with fixed boundary conditions.8 The energy was initially
stored in one of the low, i.e. long–wavelength, oscillatory modes.

4 The “statistical” quality of this statement should be stressed. The concept of
energy equipartition implies that the time average of the energy contained in
each mode is constant. In fact, fluctuations prevent the possibility that this might
exactly occur at any instant of time.

5 In the following we shall use the usual acronym for Fermi-Pasta-Ulam.
6 More precisely, according to Boltzmann’s kinetic theory, the relaxation time τr

represents an estimate of the time scale of energy exchanges inside the crystal:
Debye’s argument predicts that thermal conductivity κ is proportional to the
specific heat at constant volume of the crystal, Cv, and inversely proportional to
τr, in formulae κ ∝ Cv/τr.

7 Such sizes were already at the limit of computational performances of MANIAC
1, whose execution speed was much smaller than a modern home pc.

8 The particles at the chain boundaries are constrained to interact with infinite
mass walls, see Fig. 8.
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Fig. 9. Energy recurrence in the first 5 Fourier modes in the FPU α model. The
figure is taken from [44]

Surprisingly enough, the expected scenario did not appear. Contrary to
any intuition the energy did not flow to the higher modes, but was exchanged
only among a small number of low modes, before flowing back almost exactly
to the initial state, yielding the recurrent behavior shown in Fig. 9.

Even though nonlinearities were at work neither a tendency towards ther-
malization, nor a mixing rate of the energy could be identified. The dynamics
exhibited regular features very close to those of an integrable system.

Almost at the same time as this numerical experiment, A.N. Kolmogo-
rov outlined the first formulation of the KAM theorem (see Sect. 2). FPU
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certainly were not aware of his achievement, that indicated that all regular
features of the dynamics are kept by integrable hamiltonian systems subject
to a small enough perturbation. This could have guided the authors to rea-
lize that the nonlinear effects were too small a perturbation of the integrable
harmonic chain to prevent regular motion. A deeper understanding of the
implications of the FPU experiment on ergodicity and KAM theorem had to
wait for more than one decade, for the numerical experiment of Izrailev and
Chirikov [42] and Chirikov’s overlap criterion [43] (see also Sect. 5).

It should be mentioned that Fermi was quite disappointed by the diffi-
culties in finding a convincing explanation, thus deciding not to publish the
results. They were finally published in 1965, one decade after his death, in
a volume containing his Collected Papers [44]. The FPU report is probably
the most striking example of a crucial achievement which never appeared
as a regular paper in a scientific journal, but which, nonetheless, has been
a major source of inspiration for future developments in science. Actually,
while the understanding of the mechanisms of relaxation to equilibrium and
ergodicity mainly concerned the later efforts of european scientists, some
american researchers concentrated their attention in trying to interpret the
regular motion of the FPU chain in a different way. The first contribution
came from a seminal paper by the M.D. Kruskal, a physicist at Princeton,
and N.J. Zabusky, a mathematician at Bell Laboratories, in 1965 [45]. This
was the starting point for the large physical literature on nonlinear lattice
vibrations, that are nowadays called “solitons”. In fact, Kruskal and Zabusky
were interested in studying the continuum limit of the FPU chain. In parti-
cular, Zabusky later conjectured that the dynamical conditions investigated
by FPU in their numerical experiment could be explained by an appropriate
equation in the continuum limit [46]. This idea is quite natural, since the FPU
experiment showed that when a long–wavelength, i.e. low–frequency, mode
was initially excited, the energy did not flow towards the small–wavelength,
i.e. high–frequency, modes. Since discreteness effects are associated with the
latter modes, one can reduce the set of ordinary differential equations descri-
bing the chain to an effective partial differential equation that should provide
a confident description of long–wavelength excitations. Actually, the conti-
nuum limit of the FPU chain was found to correspond to a Korteweg-deVries
like equation9

ut + εun−2ux + µuxxx = 0 , (10)

where u is the spatial derivative of the displacement field once the right-
going wave is selected, and n is the order of the nonlinearity in 9. Exact
solutions of such equations can be explicitly found in the form of propagating
nonlinear waves. The reader should take into account that the coefficients ε
9 It should be mentioned that performing continuum limits of lattice equations

is quite a delicate mathematical problem, as discussed in [47] and also, more
recently, in [48]
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and µ depend on crucial parameters of the model: the energy of the initial
excitation, or, equivalently, the strength of the nonlinear force. For large
strength or high energy, the “dispersive” term µuxxx becomes negligible with
respect to the nonlinear term εun−2ux and (10) reduces to the first two terms
on the left hand side. This reduced partial differential equation has running
wave solutions that become unstable after a specific time scale, so-called
“shocks”. This time scale can be estimated on the basis of the parameters
appearing in the equation. Without entering into mathematical details, one
can say that the reduced equation describes excitations similar to sea waves,
which break their shape because the top of the wave propagates more rapidly
than the bottom10. This analysis provides a convincing explantion for the
FPU experiment. In fact, one can easily conclude that FPU performed their
numerical simulations in conditions where the chain was well represented by
(10), with a sufficiently large dispersion coefficient µ. Accordingly, the typical
instabilities due to discreteness effects might have become manifest only after
exceedingly long times, eventually yielding destruction of the regular motion.
Moreover, this analysis is consistent with the (almost) contemporary findings
of the numerical experiment by Izrailev and Chirikov [42], which show that
at high energies or high nonlinearities, the regular motion is rapidly lost.

4 Energy Thresholds

An alternative explanation for the localization of the energy in a small portion
of long–wavelength Fourier modes in the FPU chain can be obtained using
the resonance–overlap criterion discussed in Sect. 2. It is worth pointing out
that the same criterion provides a quantitative estimate of the value of the
energy density above which regular motion is definitely lost.

In order to illustrate this interesting issue, we have to introduce some
simple mathematical tools. Let us first recall that the Hamiltonian of the
Fermi-Pasta-Ulam model (9) can be rewritten in linear normal Fourier coor-
dinates (Qk, Pk) (phonons)

H =
1
2

∑

k

(
P 2

k + ω2
kQ

2
k

)
+ βV (Q) , (11)

where the nonlinear potential V (Q), whose strength is determined by the cou-
pling constant β11, controls the energy exchange among the normal modes
and ωk is the the k-th phonon frequency (e.g. ωk = 2 sin(πk/N) for peri-
odic boundary conditions). The harmonic energy of the k-th normal mode
is defined as Ek = (P 2

k + ω2
kQ

2
k)/2. If the energy H is small enough the

time–averaged phonon energies Ēk(T ) = T−1
∫ T

0 Ek(t)dt show an extremely
10 A clear survey on this class of partial differential equations can be found in [50],

Sects. 7 and 8. See also [49]
11 We restrict ourselves to the quartic nonlinearity n = 4 in (9), hence ν ≡ β
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slow relaxation towards the equipartition state (defined by Ek = const) as
T increases. On the contrary, at higher energies, the equipartition state is
reached in a relatively short time. The presence of these qualitatively diffe-
rent behaviors when the energy is varied was in fact predicted by Chirikov
and Izrailev [42] using the “resonance overlap” criterion. Let us give here just
a brief sketch of the application of this criterion to the FPU β model. The
corresponding Hamiltonian can be written in action-angle variables and, as
an approximation, one can consider just one Fourier mode. In fact, this is
justified at the beginning of the evolution, when most of the energy is still
kept by the initially excited mode.

H = H0 + βH1 ≈ ωkJk +
β

2N
(ωkJk)2 , (12)

where Jk = ωkQ
2
k is the action variable. In practice, only the nonlinear self-

energy of a mode is considered in this approximation. H0 and H1 are the
unperturbed (integrable) Hamiltonian and the perturbation, respectively. In-
deed ωkJk ≈ H0 ≈ E if the energy is initially put in mode k. It is then easy
to compute the nonlinear correction to the linear frequency ωk, giving the
renormalized frequency ωr

k

ωr
k =

∂H

∂Jk
= ωk +

β

N
ω2

kJk = ωk +Ωk. (13)

When N � k, then

Ωk ≈ βH0k

N2 . (14)

The ”resonance overlap” criterion consists of verifying whether the frequency
shift is on the order of the distance between two resonances:

∆ωk = ωk+1 − ωk ≈ N−1 , (15)

(the last approximation being again valid only when N � k), i.e.

Ωk ≈ ∆ωk . (16)

One obtains from this equation an estimate of εc, the ”critical” energy density
multiplied by β, above which sizeable chaotic regions develop and a fast dif-
fusion takes place in phase space while favouring relaxation to equipartition.
the form of εc is

εc =
(
βH0

N

)

c

≈ k−1 , (17)

with k = O(1) 	 N . Summarizing, primary resonances are weakly coupled
below εc and this in turn induces a slow relaxation process to equipartition.
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Conversely, above εc, fast relaxation to equipartition is present, due to “pri-
mary resonance” overlap.

The presence of an energy threshold in the FPU–model separating diffe-
rent dynamical regimes was first identified numerically by Bocchieri et al. [51].
A numerical confirmation of the predictions of the resonance overlap criterion
was obtained by Chirikov and coworkers [52]. Further confirmations came for
more refined numerical experiments [53,54], showing that, for sufficiently high
energies, regular behaviors disappear, while equipartition among the Fourier
modes sets in rapidly. Later on [55], the presence of the energy threshold was
characterized in full detail by introducing an appropriate Shannon entropy,
which counts the number of effective Fourier modes involved in the dyna-
mics (at equipartition this entropy is maximal). Around εc, the scaling with
energy of the maximal Lyapunov exponent (see Sect. 5) also changes, revea-
ling what has been called the ”strong stochasticity threshold” [56]. Below εc,
although primary resonances do not overlap, higher order resonances may,
yielding a slower evolution towards equipartition [57,58]. The time scale for
such an evolution has been found to be inversely proportional to a power of
the energy density [59].

After having illustrated the main developments along the lines suggested
by the resonance–overlap criterion, it is worth adding some further comments
about the existence of an energy threshold, which separates the regular dy-
namics observed by FPU at low energies from the highly chaotic dynamical
phase observed at higher energies.

In their pioneering contribution, Bocchieri and coworkers [51] were mainly
concerned by the implications for ergodic theory of the presence of an energy
threshold. In fact, the dynamics at low energies seems to violate ergodicity,
although the FPU system is known to be chaotic. This is quite a delicate and
widely debated issue for its statistical implications. Actually, one expects that
a chaotic dynamical system made of a large number of degrees of freedom
should naturally evolve towards equilibrium. We briefly summarize here the
state of the art on this problem. The approach to equipartition below and
above the energy threshold is just a matter of time scales, that actually
turn out to be very different from each other. An analytical estimate of the
maximum Lyapunov exponent λ (see Sect. 5) of the FPU problem [60] has
pointed out that there is a threshold value, εT , of the energy density, ε =
βH/N , at which the scaling of λ with ε changes drastically:

λ(ε) ∼
{
ε1/4 if ε > εT ;
ε2 if ε < εT .

(18)

This implies that the typical relaxation time, i.e. the inverse of λ, may be-
come exceedingly large for very small values of ε below εT . It is worth stres-
sing that this result holds in the thermodynamic limit, indicating that the
different relaxation regimes represent a statistically relevant effect. To a high
degree of confidence, it is found that εT in (18) coincides with εc in (17).
A more controversial scenario has been obtained by thoroughly investigating
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the relaxation dynamics for specific classes of initial conditions. When a few
long–wavelength modes are initially excited, regular motion may persist over
times much longer than 1/λ [57]. On the other hand, numerical simulations
and analytic estimates indicate that any threshold effect should vanish in the
thermodynamic limit [58,59,61]. An even more complex scenario is obtained
when a few short-wavelength modes are excited: solitary wave dynamics is
observed, followed by slow relaxation to equipartition [62]. It is worth men-
tioning that some regular features of the dynamics have been found to persist
even at high energies (e.g., see [63]), irrespectively of the initial conditions.
While such regularities can still play a crucial role in determining energy
transport mechanisms [41], they do not significantly affect the robustness of
the statistical properties of the FPU model in equilibrium at high energies.
In this regime, the model exhibits highly chaotic dynamics, which can be
quantified by the spectrum of characteristic Lyapunov exponents. A general
description of these chaoticity indicators and their relation with the concept
of “metric entropy”, introduced by Kolmogorov, is the subject of the following
section.

5 Lyapunov Spectra and Characterization
of Chaotic Dynamics

The possibility that unpredictable evolution may emerge from deterministic
equations of motion is a relatively recent discovery in science. In fact, a La-
placian view of the laws of mechanics had not taken into account such a pos-
sibility: the universality of these laws guaranteed that cosmic order should
extend its influence down to human scale. The metaphore of divinity as a
“clockmaker” was suggested by the regularity of planetary orbits and by the
periodic appearance of celestial phenomena, described by the elegant mathe-
matical language of analytical mechanics. Only at the end of the 19th century
did the french mathematician H. Poincaré realize that unpredictability is in
order as a manifestation of the dynamical instability typical of mechanical
systems described by a sufficiently large number of variables12. His studies on
the stability of the three–body problem with gravitational interaction led him
to introduce the concept of ”sensitivity with respect to the initial conditions”
(see also the contribution by A. Celletti et al. in this volume). He meant that
two trajectories, whose initial conditions were separated by an infinitesimal
difference, could yield completely different evolution after a suitable lapse of
time. This finding is at the basis of what we nowadays call “deterministic
chaos”, which has been identified as a generic feature of a host of dynamical
models of major interest in science and its applications. Here we do not aim
at providing the reader a full account of the fascinating history of determini-
stic chaos. Many interesting books and articles for specialists and newcomers
12 In fact, such a number is not that large: three independent dynamical variables

are enough to allow for unpredictable evolution.
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in science are available (for instance, an introductory survey to the subject
can be found in [50,37]). We rather want to focus our attention on the crucial
contribution of A.N. Kolmogorov in this field.

In order to fully appreciate Kolmogorov’s achievements it is useful to
discuss certain concepts, introduced for quantifying deterministic chaos. In
a chaotic dynamical system two infinitesimally close trajectories, say at di-
stance δ(0) at time t = 0, evolve in time by amplifying exponentially their
distance, i.e. δ(t) ∼ δ(0) expλt. The exponential rate of divergence λ > 0
measures the degree of chaoticity of the dynamics. In an isolated dynamical
system described by a finite number of variables, such an exponential in-
crease cannot last forever, due to the finiteness of the available phase space.
Nonetheless, Oseledec’s multiplicative theorem [64] guarantees that, under
quite general conditions, the following limit exists

λ = lim
t→∞ lim

δr(0)→0

1
t

ln
δr(t)
δr(0)

. (19)

Accordingly λ can be interpreted as the “average” exponential rate of diver-
gence of nearby trajectories, where the average is made over the portion of
phase space accessible to the trajectory (see also (2)). It is worth stressing
that this quantity is independent of the choice of the initial conditions, pro-
vided they belong to the same chaotic component of the phase space. More
generally, in a deterministic system described by N dynamical variables or,
as one should say, “degrees–of–freedom”, it is possible to define a spectrum
of Lyapunov exponents, λi with i = 1, · · · , N , i.e. one for each degree–of–
freedom. Conventionally, the integer i labels the exponents from the highest to
the smallest one. The stability of a generic trajectory in a multi–dimensional
space is, in principle, subject to the contribution of as many components as
there are degrees of freedom. This is quite a difficult concept that requires a
rigorous mathematical treatment, to be fully appreciated13. Intuitively, one
can say that the sum Sn =

∑n
i=1 λi measures the average exponential rates

of expansion, or contraction, of a volume of geometric dimension n in phase
space. Accordingly, S1 = λ1 ≡ λ is equivalent to the definition (19), since a
“1–dimensional volume” is a generic trajectory in phase space; S2 = λ1 + λ2
gives the divergence rate of a surface; SN =

∑N
i=1 λi is the average diver-

gence rate of the whole phase space. In dissipative dynamical systems, SN

is negative, so that the phase space volume is subject to a global contrac-
tion. Nonetheless, the presence of at least one positive Lyapunov exponent,
λ1 > 0, is enough for making the evolution chaotic: in this case, the tra-
jectory approaches a chaotic (strange) attractor. For Hamiltonian systems,
according to Liouville’s theorem, any volume in phase space is conserved and
SN = 0; moreover, for each λi > 0 there exists λN−i = −λi

14. In summary,
13 For this purpose we refer the reader to [65].
14 For each conserved quantity like energy, momentum etc., there is a pair of conju-

gated exponents that are zero. Stated differently, each conservation law amounts
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chaotic evolution implies that a small region in phase space (for instance,
the volume identifying the uncertainity region around an initial condition)
is expanded and contracted with exponential rates along different directions
in phase space. After a time on the order of 1/λ the distance between two
infinitesimally close initial conditions will take the size of the accessible phase
space: accordingly, we have no means of predicting where the image of an in-
itial point will be in phase space, by simply knowing the image of an initially
closeby point. An infinite precision in the determination of the initial condi-
tions would be required in order to cope with this task. From a mathematical
point of view, the determinism of the equations of motion remains unaffected
by a chaotic evolution; from a physical point of view, determinism is lost,
since the possibility of “predicting” is guaranteed only in the presence of a
stable deterministic evolution. In fact, in contrast with mathematics, physics
has to deal with precision and errors: in a chaotic dynamics we cannot control
the propagation of an initial, arbitrarily small uncertainty.

At this point the very meaning of physics as a predictive science can be-
come questionable, since chaotic dynamics seems to be present in the great
majority of natural phenomena. On the other hand, the impossibility of an
exact determination of the trajectories does not exclude the possibility of ha-
ving statistical knowlodge about a chaotic system. The theory of Statistical
Mechanics by Boltzmann is the first example where deterministic dynamical
rules were replaced by statistical concepts. Actually, the practical impossi-
bility of following the evolution equations of a large number of particles in
a diluted gas interacting by elastic collisions led Boltzmann to encompass
the problem by introducing an evolution equation for a distribution function
f(r,v, t). This function tells us about the probability of finding, at time t, a
particle of the gas in a given position r and with velocity v. This probably
depends on some global properties of the gas, like the temperature and the
occupied volume, rather than on the fine details of the collision dynamics.
Boltzmann showed that the evolution equation for f(r,v, t) is irreversible
and consistent with the second principle of thermodynamics: entropy tends
naturally to increase while approaching the equilibrium state, which corre-
sponds to maximal entropy. The great intuition of A.N. Kolmogorov was
that a similar, thermodynamic like, description could be adapted to chaotic
dynamics. It is important to point out also the main conceptual difference
of Kolmogorov’s approach with respect to Boltzmann. There is no need for
replacing chaotic equations with something else. The crucial observation is
that unpredictable dynamical systems can depend on some global feature, i.e.
an internal time, like 1/λ, and on the geometric structure of the phase space

to a geometrical constraint that limits the access of the trajectory to a subma-
nifold of phase space. Integrability can be a consequence of all λi’s being zero,
i.e. there can be as many conservation laws as the number of degrees of freedom.
However, it can happen that the system is not necessarily integrable and the rate
of divergence is weaker than exponential.
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(possibly including different kinds of attractors). As a substitute for ther-
modynamic entropy, Kolmogorov introduced the concept of metric entropy.
The conceptual breakthrough is that a mechanical description is replaced by
a statistical description in terms of a measure: more precisely, we study the
evolution of regions of the phase space rather than single trajectories. On this
basis, one can easily notice that the concept of “metric entropy” was taken
by Kolmogorov directly from information theory. Let us sketch his approach:
some mathematics is necessary even if we shall not enter into the technical
details15. Consider a set of n possible events, that in an experiment can be
observed with probabilities p1, p2, · · · , pn, respectively (

∑
i pi = 1). Informa-

tion theory attributes the information content − ln pj to the observation of
the j-th event. Accordingly, the average information content associated with
an experiment with n possible outcomes is H = −∑n

j=1 pj ln pj . As a first
step towards extending this definition to chaotic dynamics, Kolmogorov intro-
duced a partition of the phase space A into n disjoint subsets A1, A2, · · · , An,
with Ai ∩ Aj = 0 if i �= j: finding, at some instant of time, the trajectory in
one of these subsets is the “event” for chaotic dynamics. By identifying the
probability pj with the measure µ(Aj) of the subset Aj , one can define the
“entropy” associated with the partition A as

H(A) = −
n∑

j=1

µ(Aj) lnµ(Aj). (20)

Let us indicate with the symbol φ−t the backward in time evolution opera-
tor (or “flux”) over a time span −t, so that φ−tA represents the partition
generated by φ−t from A, by taking the intersection of all the back iterates
of each initial subset Ai. After n iterations, the application φ−t generates a
partition

A(n) = A ∩ (φ−tA) ∩ (φ−2tA) ∩ · · · ∩ (φ−ntA) , (21)

where the symbol ∩ also denotes the intersection of two partitions. One can
say that the proliferation with n of the elements of the partition (21) provides
us with a measure of how fast the dynamics divides the original partition
A, making it finer and finer. The main idea of Kolmogorov is to obtain a
quantitative measure of the degree of chaoticity, or mixing, by the average
information produced between two iterations

H(A, φ−t) = lim
n→∞[H(A(n+1)) −H(A(n))] (22)

Finally, since one aims to obtain an upper estimate of the information pro-
duced by the dynamics, the definition of metric Kolmogorov-Sinai entropy
amounts to

h(φ−t) = sup
A
H(A, φ−t). (23)

15 We refer the reader aiming at a rigorous approach to [66]
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This quantity is a dynamical indicator, which depends only on the nature of
the dynamics. The internal time of the system is then given by 1/h. Three
different situations may then appear: h = 0 for regular motion (e.g., periodic
dynamics), h = ∞ for a fully non–deterministic evolution (e.g., a dynamics
subject to the influence of external noise), and 0 < h < ∞ for a determini-
stic chaotic system. The russian mathematician Ya. B. Pesin [67] proved a
remarkable relation between Kolmogorov’s metric entropy and the positive
component of the Lyapunov spectrum

h =
m∑

j=1

λj , λm > 0 > λm+1. (24)

It is now evident that for systems with one degree of freedom, h = λ. The
russian mathematician Ya.G. Sinai was the first to propose a simple dyna-
mical model exhibiting mixing properties [15]. He considered a billiard with
convex reflecting walls (see Fig. 2) and he proved that the flux associated
with the dynamics of a bouncing ball has positive metric entopy. Later, ano-
ther russian mathematician L.A. Bunimovich showed that the same result
is obtained for the stadium billiard [16], where there is no convexity (see
Fig. 3), thus indicating that the presence of mixing requires weaker conditi-
ons. These contributions also shed some light on the possibility that metric
entropy could be at the basis of a statistical description of more physical
models, like a gas of hard spheres (the mathematical model of a diluted gas
as introduced by Boltzmann) or the FPU chain discussed in Sect. 3. No-
netheless, we should at least point out that the relation between mixing and
statistical measure necessarily has to deal with the introduction of the so-
called thermodynamic limit, i.e. the limit in which the number of degrees
of freedom goes to infinity. In general, this limit does not commute with
the limit t → ∞ in (19) and (22). In other words, the results of the mea-
surement of λ and h may depend on the order according to which these
limits are performed. Stimulated by a discussion with D. Ruelle at IHES
in Paris in 1984, two of the authors and their colleague A. Politi nume-
rically investigated this problem for the FPU chain and other similar dy-
namical models. They obtained evidence for the existence of a limit curve
for the spectrum of Lyapunov exponents in the thermodynamic limit [68]
(see Fig. 10). Further numerical indications for the existence of such a li-
mit for a variety of physical systems have been obtained afterwards, but a
rigorous mathematical proof is still lacking, although some attempts in this
direction have been made [69–71]. The existence of a Lyapunov spectrum
in the thermodynamic limit is also used as an hypothesis in the proof of
the Gallavotti-Cohen fluctuation-dissipation relation for forced reversible sy-
stems [72].
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Fig. 10. The spectrum of positive Lyapunov exponents of the FPU beta model for
different chain lengths, from 8 up to 64 oscillators

6 Quantum Computers and Quantum Chaos

In spite of the fundamental contributions by mathematicians and physicists
in the understanding of chaotic dynamics, the role on numerical simulations
of chaos can hardly be overestimated. Indeed, computer simulations made
possible the investigation of the richness of chaos in all of its details and made
the image of chaos familiar to the public. At present, the new technological
developments related to quantum information and computation open new
horizons to the simulations of chaos.

Indeed, a great deal of attention has been devoted in the last years to
the possibility of performing numerical simulations on a quantum compu-
ter. As it was already stressed long time ago by Feynman [73], the massive
parallelism allowed by quantum mechanics enables us to operate on an expo-
nential number of states using a single quantum transformation. The recent
development of quantum information processing has shown that computers
designed on the basis of the laws of quantum mechanics can perform some
tasks exponentially faster than any known classical computational algorithm
(see e.g. [74]). The best known example of such a task is the integer factoriza-
tion algorithm proposed by Shor. The quantum computer can be viewed as
a system of qubits (two-level systems), on which “one-qubit” rotations and
“two-qubit” transformations allow one to realize any unitary transformation
in the exponentially large Hilbert space [74]. At present simple algorithms
with up to seven qubits have been realized with nuclear spins in a molecule
(NMR) and cold trapped ions.

Quantum computation sheds a new light on chaotic dynamics. Indeed, due
to quantum parallelism, a quantum computer can iterate the Liouville den-
sity distribution for O(22nq ) classical trajectories in the Arnold cat map (1)
in O(nq) quantum operations (e.g. “one-qubit” rotations and control-NOT
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“two-qubit” gates), while a classical simulation requires O(22nq ) operations
[75]. For these simulations the phase-space of (1) is discretized inN2 cells with
coordinates (xi, yj), xi = i/N and yj = j/N , i, j = 0, . . . , N − 1, N = 2nq .
The quantum algorithm simulates this discretized dynamics with the help
of 3 quantum registers. The first two registers describe the position xi and
the momentum yj of N2 points in the discretized phase-space, where each
register contains nq qubits. The remaining nq − 1 qubits in the third register
are used as a work space. An initial classical Liouville distribution can then
be represented by a quantum state proportional to

∑
i,j aij |xi > |yj > |0 >

where the coefficients ai,j are 0 or 1, corresponding to the classical density.
The classical dynamics of map (1) is performed with the help of modular
additions on the basis of the quantum algorithm described in [76]. The third
register holds the curries of the addition and the result is taken modulo N
by eliminating the last curry. One map iteration is done in two additions
performed in parallel for all classical trajectories in O(nq) quantum gates.

An example of classical dynamics on a 128×128 lattice is shown in Fig. 11
(left). After t = 10 iterations the cat image becomes completely chaotic. Even
if the exact dynamics is time reversible the minimal random errors in the last
bit (round-off errors) make it effectively irreversible due to dynamical chaos
and exponential growth of errors.

Hence, the initial image is not recovered after 10 (or 200) iterations for-
ward/backward (see Fig. 11), even if these minimal errors are done only once
at the moment of time inversion. On the contrary the quantum computation
remains stable to 1% random errors in the phase of unitary rotation perfor-
med by each quantum gate: accordingly, the time reversibility of motion is
preserved (see Fig. 11 (right)). In fact the precision of quantum computation
remains sufficiently good during a time scale tf ∝ 1/(ε2nq) where ε is the
error amplitude in quantum gate rotations [75]. The physical origin of this
result is related to the fact that the imperfection at each gate rotation trans-
fers probability of the order ε2 from the exact state to all the other states.
At the same time the classical error propagates exponentially, due to chaotic
deterministic dynamics. This result demonstrates a qualitative difference in
the nature of classical and quantum errors. Indeed, quantum perturbation
theory guarantees that small quantum errors weakly perturb the evolution.
Conversely, from the viewpoint of quantum mechanics (spin flip) a classical
error is large even in the last bit and this is the reason why it propagates
exponentially in the case of simulations of chaotic dynamics. Thus, despite
the common lore that quantum computers are very vulnerable to noise, the
study of the Arnold cat map dynamics shows that classical unstable motion,
for which classical computers display exponential sensibility to errors, can
be simulated accurately with exponential efficiency by a realistic quantum
computer [75].

There are also other quantum algorithms which allow the simulations of
complex quantum dynamics in a polynomial number of gates for an expo-
nentially large Hilbert space. For example, the quantum dynamics of map
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Fig. 11. Dynamics of the Arnold cat map (obtained by interchanging x and y in
(1)) simulated on a classical computer (left) and quantum computer (right), on a
128 × 128 lattice. Upper row: initial distribution; second row: distributions after
t = 10 iterations; third row: t = 20, with time inversion made after 10 iterations;
bottom row: distributions at t = 400, with time inversion made at t = 200. Left:
the classical error of one cell size (ε = 1/128) is done only at the moment of
time inversion; right: all quantum gates operate with quantum errors of amplitude
ε = 0.01; grayness is proportional to the probability |ai,j |2, nq = 7, 20 qubits in
total. [From [75]]

(3) can be simulated in O(n3
q) gates for the vector size N = 2nq [77]. This

opens new links between quantum computation and the field of quantum
chaos, which investigates the properties of quantum systems with a chaotic
classical limit. The field of quantum chaos has become an independent area
of research, closely related to mesoscopic physics, Anderson localization in
disordered potential, random matrix theory and periodic orbit quantization
in the regime of chaos. due to space constraints, we cannot describe in any
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detail this novel and fertile research field. We can only address the reader to
reviews and books that can provide her/him with an exhaustive overview on
this subject [29,78–81].
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Abstract. Since ancient times the problem of the stability of the solar system has
been investigated by a wide range of scientists, from astronomers to mathematici-
ans, to physicists. The early studies of P.S. Laplace, U. Leverrier, C.E. Delaunay
and J.L. Lagrange were based on perturbation theory. Later H. Poincaré proved the
non integrability of the three-body problem. It was only in the ’50s that A. Kol-
mogorov provided a theorem which can be used in a constructive way to prove
the stability of motions in nearly-integrable systems. A few years later, the pioneer
work of Kolmogorov was extended by V.I. Arnold and J. Moser, providing the so-
called KAM theory. Though the original estimates of the KAM theorem do not
provide rigorous results in agreement with the astronomical predictions, the recent
implementations of computer- assisted proofs show that KAM theory can be effi-
ciently used in concrete applications. In particular, the stability of some asteroids
(in the context of a simplified three-body problem) has been proved for the realistic
values of the parameters, like the Jupiter-Sun mass ratio, the eccentricity and the
semimajor axis.

KAM theory was the starting point for a broad investigation of the stability
of nearly-integrable Hamiltonian systems. In particular, we review the theorems
developed by N.N. Nekhoroshev, which allows to prove the stability on an open set
of initial data for exponentially long times.

The numerical simulations performed by M. Henon and C. Heiles filled the gap
between theory and experiments, opening a bridge toward the understanding of
periodic, quasiperiodic and chaotic motions. In particular, the concept of chaos
makes its appearance in a wide range of physical problems. The extent of chaotic
motions is provided by the computation of Lyapunov’s exponents, which allow to
measure the divergence of nearby trajectories. This concept was recently refined to
investigate the behaviour of weakly chaotic motions, through the implemention of
frequency analysis and Fast Lyapunov Indicators (FLI). We review the applicati-
ons of such methods to investigate the topology of the phase space. Moreover, the
computation of the FLI’s allowed to study the transition from Chirikov to Nek-
horoshev regime and therefore it provides results about diffusion in Hamiltonian
systems.
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1 Introduction

We know that the solar system has survived catastrophic events since 5 billion
years, which correspond to the estimated age of our star. Although the Sun
will become a red giant in about 5 billion more years thus destroying the
regularity of the planetary motions, the question of the stability of the solar
system within this time interval remains open.

This problem has been open since antiquity and it has motivated the
development of many studies in mathematical physics. In this context, the
so-called perturbation theory was developed by Laplace, Leverrier, Delaunay
and Lagrange, with the aim of investigating the dynamics of planetary mo-
tion. To be more precise, let us start with the simplest model of planetary
evolution, the two-body problem, consisting of the motion of one planet un-
der the gravitational influence of the Sun. As is well known, the solution is
provided by Kepler’s laws which guarantee that (in this approximation) the
planet orbits the Sun on an elliptic orbit, the Sun being at one of the foci.
The two-body problem is the typical example of an integrable system, since
its solution can be explicitly provided. In order to get a more realistic model,
we should include the gravitational attraction of the other bodies of the solar
system. Therefore, let us start by considering the three-body problem, where
the effect of a third body is included. Despite the many efforts of scientists in
the 19th century, a mathematical solution to this problem cannot be found:
indeed, H. Poincaré proved the non-integrability of the three-body problem
[50]. However, if we consider that the action of the third body (whatever it is:
planet, satellite or comet) is small compared to the force exerted by the Sun,
we can include the three-body problem in the class of the nearly-integrable
systems. In our example, the integrable approximation is provided by the
two-body problem and the strength of the nonlinearity is relatively small
(being proportional to the mass ratio of the primaries, i.e. the third body
and the Sun). In this framework, perturbation theory provides useful tools to
give (in particular cases) an approximate solution to the equations of motion.
However, such theory does not allow definite conclusions to be drawn about
the stability of the dynamics, since the mathematical series involved in the
construction of the approximate solution are generally divergent.

It was only in the ’50s that A.N. Kolmogorov made a major breakthrough
in the study of nearly-integrable systems. He proved [34] that for slightly per-
turbed systems, under quite general assumptions, some regions of the phase
space remain regular. We stress that Kolmogorov’s theorem can be used in
a constructive way to prove the stability of motions. A few years later, the
pioneering work of Kolmogorov was extended by V.I. Arnold [1] and J. Moser
[46], giving rise to the so-called KAM theory. Though the original estima-
tes of the KAM theorem do not provide rigorous results in agreement with
the physical predictions, recent implementations of computer-assisted proofs
show that KAM theory can be efficiently used in model problems, yielding
results in agreement with the experimental observations. KAM theory was
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the starting point for a wider investigation of the stability of nearly-integrable
systems, which is briefly reviewed in Sect. 2. Moreover, it opened a new field
of research, related to the development of numerical experiments.

In this framework, the simulations performed by M. Hénon and C. Heiles
[32] filled the gap between theory and experiments, opening a bridge toward
the global study of the dynamical properties of the whole phase space. In par-
ticular, the concept of chaos makes its appearance in a wide range of physical
problems. The presence of chaotic motions is provided by the computation of
the Lyapunov exponents, which allow the divergence of nearby trajectories to
be measured. This concept was recently refined to investigate the behaviour
of weakly chaotic motions, through the implementation of frequency analysis
and Fast Lyapunov Indicators (hereafter, FLI). In Sect. 3 we review some
applications of such methods to investigate the topology of the phase space.
Moreover, the computation of the FLIs allowed the study of the transition
from Chirikov’s to Nekhoroshev’s regime. It therefore provides results about
diffusion in Hamiltonian systems.

2 Stable Motions

2.1 Integrable and Non-integrable Systems

When dealing with real physical problems, it is rather exceptional to find
a mathematical solution which describes the dynamics of the system. If the
solution cannot be found, the typical approach is to diminish the complexity
of the problem by introducing a reasonable set of assumptions. If a solution
of the most simplified model can be found, then one can proceed to rein-
troduce the ingredients which make the model closer to reality. However,
such procedure can fail even at the basic step, when the simplest model is
considered.

A familiar example of this approach is provided by the investigation of the
stability of the solar system. The reality consists of 9 planets orbiting around
the Sun, a lot of satellites moving about the planets, thousands of small
objects like comets and asteroids. Moreover, one should take into account
the oblateness of the solar system bodies, the existence of rings around the
major planets, tides, solar wind effects and so on. Without proceeding in
the discouraging list of events which contribute to the description of the real
world, we start our investigation by reducing the problem to the study of
the simplest model arising in Celestial Mechanics: the two-body problem.
Consider, for example, the motion of an asteroid about the Sun, neglecting
all additional effects like the gravitational influence of the other planets. The
solution of this simplified problem dates back to J. Kepler, according to whom
the asteroid revolves around the Sun on an elliptic orbit and the motion can
be described by elementary formulae. The two-body problem is the archetype
of an integrable system, for which an explicit solution can be found.
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According to our strategy we increase the difficulty of the problem, just
adding the effect of a third body, for example Jupiter, the largest planet of the
solar system. The three-body problem has been investigated since the 18th

century by several astronomers and mathematicians. However, an explicit so-
lution cannot be found. Indeed, H. Poincaré [50] proved that the three-body
problem is non-integrable, since there are not sufficiently many independent
integrals (namely, quantities which are constant during the evolution of the
dynamics), which would allow the derivation of mathematical expressions to
describe the motion of an asteroid under the Newtonian attraction of the Sun
and Jupiter. Since the mass of Jupiter is much smaller than that of the Sun
(the mass ratio amounts to about 10−3), the asteroid–Sun–Jupiter problem
is close to the asteroid–Sun integrable system whose solution is provided by
Kepler’s laws. Therefore the effect of Jupiter can be considered as a small
perturbation and the three-body problem enters the class of the so-called
nearly-integrable systems. In this case, even if the complete answer cannot
be given, one can proceed by trying to find an approximate solution to the
equations of motion, which would describe the dynamics with sufficient ac-
curacy. The development of this kind of approach is known as perturbation
theory, which we shall describe in the next section.

In order to make these concepts quantitative, let us consider a mechanical
system with n degrees of freedom, described by the Hamiltonian function
H(p, q), where p ∈ Rn, q ∈ Rn. If the system is integrable, there exists a
canonical change of variables C : (I, ϕ) ∈ Rn × Tn → (p, q) ∈ R2n (with
T ≡ R/2πZ), such that the transformed Hamiltonian becomes

H ◦ C(I, ϕ) = h(I) ,

having the property that it depends only on the variables I. The coordinates
(I, ϕ) are known in the literature as action–angle variables [4]. The integrabi-
lity of the system can be immediately observed by writing down Hamilton’s
equations. In fact, denoting by

ω = ω(I) =
∂h(I)
∂I

the frequency or rotation number of the system, one has

İ = −∂h(I)
∂ϕ

= 0

ϕ̇ =
∂h(I)
∂I

= ω(I) .

Therefore, the vector I is constant during the motion, say I = I0, while from
the second equation we have ϕ = ω(I0)t + ϕ

0
, where (I0, ϕ0

) denote the
initial conditions.



From Regular to Chaotic Motions through the Work of Kolmogorov 37

A nearly-integrable system can be conveniently described in terms of a
Hamiltonian of the form

H(I, ϕ) = h(I) + εf(I, ϕ) , (1)

where h(I) represents the integrable part, while εf(I, ϕ) is the perturbation
whose size, measured by the parameter ε, is supposed to be small.

The dynamics associated with the three-body problem can be described
in terms of a nearly-integrable Hamiltonian system of the previous form.
Indeed, referring to the example of the motion of the asteroid under the
attraction of the Sun and Jupiter, the integrable part represents the two-
body asteroid–Sun interaction (whose solution is given by Kepler’s laws),
while the perturbation is due to the gravitational influence of Jupiter; in
particular, the perturbing parameter ε represents the Jupiter-Sun mass ratio.
Though an explicit solution of this problem cannot be found, perturbation
theory can provide useful tools to predict the motion with good accuracy.

2.2 Perturbation Theory

Celestial Mechanics stimulated the development of perturbation theory. To
give an example, due to unexplained perturbations in the motion of Ura-
nus, the discovery of the planet Neptune was anticipated theoretically by J.
Adams and U. Leverrier; their mathematical computations, performed using
perturbation theory, predicted the position of Neptune with astonishing ac-
curacy.

In order to explore in more detail the fundamentals of perturbation theory
[4,5,26,52], let us start by considering a Hamiltonian function of the form (1).
Neglecting the perturbation, we can solve explicitly the equations correspon-
ding to the Hamiltonian h(I); this provides an ε-approximation of the true
solution up to a time of the order of 1/ε. The goal of perturbation theory
is to introduce a suitable change of coordinates such that we can integrate
the equations of motion for a longer time. In particular, we describe a sim-
ple algorithm that allows the perturbation to be removed to order ε2. More
precisely, we define a convenient change of variables, say C : (I ′, ϕ′) → (I, ϕ)
with the property that the transformed Hamiltonian H ′(I ′, ϕ′) has the form

H ′(I ′, ϕ′) = H ◦ C(I ′, ϕ′) ≡ h′(I ′) + ε2f ′(I ′, ϕ′) , (2)

with suitable functions h′ and f ′. We remark that the perturbing function has
now been removed to orders ε2 and therefore Hamilton’s equations associated
with (2) can be integrated up to a time of order 1/ε2. Since ε is a small
quantity (0 < ε << 1) we get the solution of the motion for a longer time.
This idea was developed in the 18th century to compute the dynamics of
the bodies of the solar system with more precision than Kepler’s laws. The
ingredients needed to implement perturbation theory are very elementary;



38 A. Celletti, C. Froeschlé, and E. Lega

they are based on the construction of a coordinate transformation, a Taylor
series development as a function of the perturbing parameter ε, and a Fourier
series expansion to determine explicitly the change of coordinates.

It is rather instructive to derive a first order perturbation theory. We
ask the reader to make a little effort in trying to follow the mathematical
formulae, so that she/he can control the basics of the computations that allow
refined predictions of the solar system dynamics. Let us start by introducing
the canonical change of variables (I, ϕ) → (I ′, ϕ′) by means of the system of
equations

I = I ′ + ε
∂Φ(I ′, ϕ)

∂ϕ

ϕ′ = ϕ+ ε
∂Φ(I ′, ϕ)

∂I ′ ,

where the unknown function Φ(I ′, ϕ) is usually referred to as the generating
function. We remark that Φ depends on the old angle variables ϕ and on the
new action variables I ′, as usually defined in classical mechanics textbooks
(see, e.g., [4]). In order to give explicit formulae for the transformed Hamil-
tonian, let us start by splitting the perturbing function f(I, ϕ) into a part
f0(I) = 1

(2π)n

∫
Tn f(I, ϕ)dϕ, depending only on the variables I and a remain-

der function f̃(I, ϕ) defined by the expression f̃(I, ϕ) ≡ f(I, ϕ)−f0(I). Next,
we insert the change of variables in the Hamiltonian (1) and we expand in a
Taylor series up to second order around ε = 0; more precisely, we obtain

h(I ′ + ε
∂Φ(I ′, ϕ)

∂ϕ
) + εf(I ′ + ε

∂Φ(I ′, ϕ)
∂ϕ

, ϕ)

= h(I ′) + ω(I ′) · ε∂Φ(I ′, ϕ)
∂ϕ

+ εf0(I ′) + εf̃(I ′, ϕ) +O(ε2) ,

where we recall that ω ≡ ∂h
∂I . Since we want that the new Hamiltonian is

integrable up the second power of ε, we need to kill the first order term in ε
by requiring that the function Φ satisfies the equation

ω(I ′) · ∂Φ(I ′, ϕ)
∂ϕ

+ f̃(I ′, ϕ) = 0 . (3)

The above equation is well-posed, since its average over the angle variables is
zero. If we succeed in finding a solution to (3), then we immediately recognize
that the new integrable Hamiltonian can be written as

h′(I ′) = h(I ′) + εf0(I ′) ,
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whose associated Hamilton’s equations provide the solution of the motion up
to O(ε2). Equation (3) can be used to derive an explicit expression for the
generating function. More precisely, let us expand the functions Φ and f̃ in
Fourier series as

Φ(I ′, ϕ) =
∑

m∈Zn\{0}
Φ̂m(I ′) eim·ϕ ,

f̃(I ′, ϕ) =
∑

m∈Zn\{0}
f̂m(I ′) eim·ϕ .

Inserting the Fourier expansion inside (3) we obtain

i
∑

m∈Zn\{0}
ω(I ′) ·m Φ̂m(I ′) eim·ϕ = −

∑

m∈Zn\{0}
f̂m(I ′) eim·ϕ ,

from which we derive

Φ̂m(I ′) = − f̂m(I ′)
i ω(I ′) ·m .

Casting together the above formulae, we obtain that the generating function
is given by the expression

Φ(I ′, ϕ) = i
∑

m∈Zn\{0}

f̂m(I ′)
ω(I ′) ·m eim·ϕ .

We strongly remark that the algorithm presented above is constructive in
the sense that it provides explicit formulae for the computation of the trans-
formed Hamiltonian, as well as of the canonical change of variables. Howe-
ver, a problem might arise in the above implementation whenever the terms
ω(I ′) ·m are zero, meaning that the frequency vector is rationally dependent.
In such a case, the generating function is not defined and the algorithm fails.
Indeed, if the vector ω is rationally independent, the divisors are not identi-
cally zero; they can however become arbitrarily small and they can lead to the
divergence of the series defining the generating function. The small divisor
problem is the obstacle that prevents the iteration of the algorithm descri-
bed above to higher orders in ε. If the divisors are very small, the Fourier
coefficients defining the generating function become very big and the series
may not converge. However, the theory founded by A.N. Kolmogorov in 1954
allows infinitely many iterations of the above procedure and, under suitable
assumptions, leads to the proof of the existence of stable motions.

2.3 The Kolmogorov–Arnold–Moser Theorem

The success of perturbation theory crucially depends on the character of the
frequency vector ω. Let us focus on the case ω = (ω1, ..., ωn) rationally inde-
pendent, meaning that there does not exist a vanishing linear combination
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with rational coefficients (unless all the coefficients are zero). A quasi-periodic
motion is a solution that can be expressed (as the time t varies) as a function
of the form F = F (ω1t, ..., ωnt), where F (ϕ1, ..., ϕn) is a multiperiodic func-
tion, 2π-periodic in the angles ϕi and ω is rationally independent. In order to
illustrate the difference between periodic and quasi-periodic motions, let us
consider the dynamics on a two-dimensional torus (i.e., fix n = 2), which is
graphically represented by a life-belt. A point on the torus is located through
two angles ϕ1, ϕ2 (with 0 ≤ ϕ1 ≤ 2π, 0 ≤ ϕ2 ≤ 2π) measured on the parallel
and on the meridian of the torus. If we assume that the evolution is given by
ϕ1(t) = ω1t + ϕ1(0), ϕ2(t) = ω2t + ϕ2(0). The difference between periodic
and quasi-periodic motions is given by the rational or irrational character of
the quantity ω1

ω2
. In particular, if ω1

ω2
is a rational number, say ω1

ω2
= p

q with
p, q ∈ Z+, then the motion is periodic and it retraces the same steps. On the
contrary, if ω1

ω2
is irrational, the evolution never returns to the initial position

and it can be shown that the trajectory is everywhere dense on the torus,
defining a quasi-periodic motion [2].

As described in Sect. 2.2, perturbation theory concerns the fate of the so-
lutions of an integrable system under a small perturbation that preserves the
Hamiltonian structure. Standard theories approached this problem by fixing
the initial conditions and investigating the consequent evolution. Instead of
looking for the stability of the solution with preassigned initial conditions,
Kolmogorov changed the point of view by investigating the stability of the
dynamics with a fixed frequency ω. At the International Congress of Ma-
thematicians held in Amsterdam in 1954, Kolmogorov announced a result
which marked a milestone in the development of the stability analysis of
nearly-integrable Hamiltonian systems [34].

Kolmogorov’s theorem can be stated as follows: consider a real-analytic
Hamiltonian function of the form (1) and fix a rationally independent fre-
quency vector ω; under suitable assumptions on the unperturbed Hamilto-
nian h and on the frequency ω, if the strength of the perturbation (namely
the parameter ε) is sufficiently small, there exists an invariant torus on which
a quasi-periodic motion with frequency ω takes place. Moreover, Kolmogo-
rov’s theorem states that the collection of such invariant tori form a set of
positive measure in the phase space. In [34] Kolmogorov also gave an outline
of the proof: his scheme turned out to be particularly rich and useful. In
1963 V.I. Arnold [1,2] published a detailed alternative proof of Kolmogorov’s
theorem, while in 1962 J. Moser [46] developed a proof about the existence of
invariant curves for smooth enough area-preserving mappings in the plane.
Since then, the overall theory is known with the acronym of KAM theory.

In order to illustrate KAM theory in more detail, let us consider a Hamil-
tonian function of the form (1). As far as the integrable system is concerned
(namely setting ε = 0), we have seen that Hamilton’s equations lead to quasi-
periodic motions where the actions are constant, say I = I0 with ω(I0) ≡ ω0,
while the angles vary linearly with time (ϕ(t) = ω0t+ ϕ

0
). The assumptions
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under which KAM theory can be applied are very general. The first hypo-
thesis concerns the unperturbed Hamiltonian h(I) which we assume to be
non-degenerate, in the sense that the determinant of the Hessian matrix is
different from zero 1:

det
∂2h(I)
∂I2 �= 0 , ∀ I ∈ Rn . (4)

The second assumption concerns the frequency vector: in order to avoid the
small-divisor problem, one requires that ω0 satisfies a strong irrationality
condition, namely that ω0 fulfills the diophantine inequalities:

|ω0 ·m|−1 ≤ C|m|τ , ∀ m ∈ Zn\{0} , (5)

where C, τ are positive constants. We remark that the above assumption
is more stringent than requiring a non-resonance condition of the form
|ω0 ·m| �= 0 for any m ∈ Zn\{0}.

Since the diophantine condition (5) plays a key role in the statement of the
KAM theorem, we want to make it clearer through a concrete example. Take
n = 2 and assume that the frequency vector has the form ω0 ≡ (γ, 1) with γ
being a real number. Let us introduce the continued fraction representation
of the number γ as the sequence of positive integers {a0, a1, a2, a3...}, such
that

γ = a0 +
1

a1 + 1
a2+ 1

a3+...

.

Using the standard notation, we write γ = [a0; a1, a2, ...]. A simple com-
putation shows that if γ is a rational number, then its continued fraction
is composed by a finite number of terms: there exists a positive integer N
such that γ = [a0; a1, a2, ..., aN ]. On the contrary, if γ is an irrational num-
ber, then the continued fraction representation is infinite. Number theory
guarantees that the diophantine condition (5) with τ = 1 is satisfied, for
example, by the so-called noble numbers, i.e. irrational numbers whose con-
tinued fraction is definitely 1: there exists a positive integer M such that
γ = [a0; a1, a2, ..., aM , 1, 1, 1, ...]. Obviously, the most “noble” irrational num-
ber is represented by a continued fraction composed by all 1’s; this number,
known since antiquity, is the golden ratio

√
5+1
2 = [1; 1, 1, 1, ...]. The gol-

den ratio satisfies condition (5) with the smallest diophantine constant C,
being C = 3+

√
5

2 . Finally, let us mention that each irrational number can be
approximated by a sequence of rational numbers {pk

qk
}k∈Z provided by the

successive truncations of the continued fraction, i.e.

p1

q1
= a0 +

1
a1

,
p2

q2
= a0 +

1
a1 + 1

a2

,
p3

q3
= a0 +

1
a1 + 1

a2+ 1
a3

...

1 Notice that the non-degeneracy condition implies that the frequencies satisfy the
relation: det ∂ω(I)

∂I
�= 0.
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For the golden ratio, the rational approximants are given by the ratio of
the so-called Fibonacci’s numbers and the sequence {1, 2

1 ,
3
2 ,

5
3 ,

8
5 ,

13
8 ,

21
13 , ...}

converges to
√

5+1
2 .

Coming back to the description of the content of KAM theory, let us
consider a Hamiltonian system described by (1), assuming that the conditi-
ons (4) and (5) are satisfied. We ask ourselves whether there still exists, for
the perturbed problem (namely taking ε �= 0), an invariant torus on which
a quasi-periodic motion with frequency ω0 takes place. KAM theory yields
a positive answer to this question, provided that the size of the perturbing
parameter ε is sufficiently small, say ε ≤ εKAM (ω0). The smallness condition
is required in order to guarantee the convergence of the series expansions
involved in the proof. We remark that for low-dimensional iso-energetic non-
degenerate Hamiltonian systems, the existence of a KAM torus provides a
strong stability property. More precisely, if n = 2, the phase space has di-
mension 4 and the constant energy surfaces have dimension 3. Therefore, the
2-dimensional KAM tori separate the constant energy levels providing the
stability of the motion, due to the uniqueness of the solutions of ordinary
differential equations. This property ceases to be valid as n ≥ 3; indeed, al-
ready for n = 3, the dimensions of the phase space and of the constant energy
surfaces are, respectively, 6 and 5. Thus, the 3-dimensional KAM tori do not
provide a separation of the phase space into invariant regions as it is the case
for the 2-dimensional Hamiltonian systems.

Before sketching the proof of the KAM theorem, let us briefly describe
the qualitative behaviour of the KAM torus as the perturbing parameter is
varied. If ε is very small, the invariant torus lives close to the location of the
unperturbed torus, but it becomes more and more displaced and deformed as
the perturbing parameter increases. At a certain value of ε, say ε = εc(ω0),
the invariant torus ceases to be regular and it breaks down for ε > εc(ω0). In
order to estimate the critical break-down threshold of an invariant torus with
frequency ω0, we can use the analytical approach given by the KAM theorem
to get a lower bound εKAM (ω0). Alternatively, we can implement a numerical
investigation to determine the break-down value εc(ω0). For this approach,
the most used numerical method is due to J. Greene [28], who provided an
efficient algorithm to compute the critical threshold. The original work [28]
was developed for a simple discrete system known as the standard mapping,
characterized by a single frequency ω0 ∈ R. Greene’s method relies on the
conjecture that the break-down of an invariant surface with frequency ω0 is
strictly related to the transition from stability to instability of the periodic
orbits with frequency given by the rational approximants {pk

qk
}k∈Z converging

to ω0. The stability of the periodic orbits can be easily determined by com-
puting the Lyapunov exponents; therefore, Greene’s method can be easily
adapted to numerical computations and it has been extensively applied to a
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a b

Fig. 1. Newton’s method for finding the root of the equation f(ξ) = 0. a Linear
convergence; b quadratic convergence

wide variety of continuous and discrete systems. Partial proofs of Greene’s
technique have been presented in [18] and [44].

Concerning the analytical estimate, the idea behind Kolmogorov’s theo-
rem is to overcome the small divisor problem by producing a superconvergent
sequence of canonical transformations. We have reviewed the standard per-
turbation theory which allows the transformation of the initial Hamiltonian,
say H1 = h1 + εf1, to a Hamiltonian denoted as H2 = h2 + ε2f2, where the
perturbation is of order ε2. One can try to iterate the algorithm to obtain the
Hamiltonian H3 = h3 + ε3f3 and, at the j-th step, Hj = hj + εjfj . However,
the hindrance due to the convergence of the method cannot in general be over-
come. Kolmogorov’s idea consists in the development of a quadratic method
according to which the initial Hamiltonian is transformed to H2 = h2 + ε2f2.
Iterating, one has H3 = h3 + ε4f3 and, at the j-th step, Hj = hj + ε2

(j−1)
fj .

The fact that the perturbation decreases with ε faster than linearly allows to
control the small divisors appearing in the sequence of transformations.

Newton’s method for finding the real root of an equation f(ξ) = 0 offers a
convenient opportunity to explain the difference between the linear (standard
perturbation theory) and quadratic (KAM theory) methods (see Fig. 1). Let
us start with an initial approximation ξ0 and let e0 ≡ |ξ−ξ0| be an estimate on
the initial error. If we proceed to find the solution by a linear convergence, the
successive approximation ξ1 is determined as the intersection of the tangent
to the curve at the point (ξ0, f(ξ0)) with the ξ-axis. Let the derivative of f at
ξ0 be η0 ≡ f ′(ξ0). The next approximation ξ2 is computed as the abscissa of
the line through (ξ1, f(ξ1)) with slope η0. Iterating this algorithm, the error
at step j is ej = |ξ − ξj | = O(ej+1

0 ), in analogy to standard perturbation
theory.

In the quadratic procedure, the successive approximations are compu-
ted as the intersection between the ξ-axis and the tangent to the function
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computed at the previous step, i.e.

ξj+1 = ξj − f(ξj)
f ′(ξj)

j = 0, 1, 2...

Let us expand f(ξ) around ξj ; the second order expansion is given by

0 = f(ξ) = f(ξj) + f ′(ξj)(ξ − ξj) +
f ′′(ξj)

2!
(ξ − ξj)2 +O(|ξ − ξj |3) ,

which yields

ξj+1 − ξ =
1
2!

f ′′(ξj)
f ′(ξj)

(ξ − ξj)2 .

Therefore, the error at the step j goes quadratically as

ej+1 = O(e2j ) = O(e2
j

0 ) .

The proof of the KAM theorem requires a long set of estimates in order to
ensure the convergence of the method. We refer the reader to [34,1,46,5,26,52]
for the detailed proof.

2.4 The Stability of a Model Associated
to the Three-Body Problem

The study of the stability of the three-body problem in Celestial Mechanics
has a long tradition. A mathematical approach based on first-order pertur-
bation theory was introduced by Lagrange and Laplace. In particular, they
focused on the effect of small perturbations on the dynamics of the planets
in order to see whether, after a sufficiently long time, collisions or escape to
infinity might take place. In [2], the planetary motion in the framework of
the three-body and many-body problems was investigated. Quoting directly
V.I. Arnold ([2], p. 125, see also [1]), his result is the following: “for the ma-
jority of the initial conditions under which the instantaneous orbits of the
planets are close to circles lying in a single plane, perturbation of the pla-
nets on one another produces, in the course of an infinite interval of time,
little change on these orbits provided the masses of the planets are sufficiently
small”. To give concrete estimates, M. Hénon [31] applied the original ver-
sion of Arnold’s theorem to the three-body problem, allowing him to prove
the existence of invariant tori for values of the perturbing parameter (na-
mely the Jupiter–Sun mass ratio) less or equal than 10−333. This estimate
was improved to 10−50 by applying Moser’s theorem. However, astronomical
observations show that the mass of Jupiter compared to that of the Sun is
about 10−3. The discrepancy between the KAM estimate and the physical
value led to the idea that KAM theory is unable to produce efficient results.
Nevertheless, at least for some model problems, the refinement of the KAM
estimates and computer-assisted series expansions provide results which are
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in agreement with the astronomical observations and numerical experiments
[9–13]). Let us describe a recent result obtained in [13], concerning the sta-
bility of some asteroids in a 3-body framework (see also [12]). Recall that
asteroids are thousands minor bodies of the solar system which populate a
belt between the orbits of Mars and Jupiter.

Let us introduce a mathematical model, which describes the motion of an
asteroid moving under the gravitational influence of the Sun and Jupiter. We
assume that the three bodies move on the same plane and that the mass of
the asteroid is so small that it does not influence the motion of the primaries.
Moreover, we assume that Jupiter orbits the Sun on a circular (Keplerian) or-
bit. This model is known as the planar, circular, restricted three-body problem.
It can be conveniently described in terms of suitable action–angle coordina-
tes, known as Delaunay’s variables [16,53] and the corresponding Hamiltonian
function has two degrees of freedom. The unperturbed frequencies (namely
the frequencies obtained considering the two-body problems provided by the
pairs Sun–asteroid or Sun–Jupiter) are inversely proportional to the periods
of revolution about the Sun. We remark that a resonance condition occurs
whenever the ratio of the periods of revolution of the asteroid and of Jupiter
about the Sun is a rational number; there are many examples in the asteroidal
belt which meet this condition, usually denoted as orbit–orbit resonance.

With reference to Sect. 2.3, since the Hamiltonian system is two-dimen-
sional, we fix a level of energy (corresponding to the Keplerian motion of
the asteroid) in order to have some control on the dynamics. The stability
of the minor body can be obtained by proving the existence of invariant
surfaces which confine the motion of the asteroid on the given energy level.
Refined KAM estimates for the isoenergetic case have been developed in
[13]. The proof involves heavy computations of the series expansion of the
solution. To this end, a suitable implementation on the computer has been
performed. We remark that all numerical errors introduced by the machine
are controlled through the so-called interval arithmetic technique, which is
becoming a widespread tool to prove analytical results with the aid of the
computer (we refer the reader to [35,17,33] and references therein for details
about computer-assisted proofs). We want to stress that computer-assisted
techniques are a complementary part in the proof of mathematical results.

The dynamics of the asteroids Iris, Victoria and Renzia have been consi-
dered; the application of the (isoenergetic, computer-assisted) KAM theory
provides their stability for values of the perturbing parameter less than or
equal to 10−3, giving a result in full agreement with the astronomical pre-
diction. As a conclusion, we stress that this result contributes to show that
beside solving the stability problem from a purely mathematical point of
view, KAM theory turns out to be effective in physical models as well.
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3 Unstable Motions

Quasi periodic motions have been investigated in the previous section, where
we showed that the essential features are close to the integrable approxi-
mation. Within KAM theory, nothing is predicted for the initial conditions
which do not satisfy the diophantine inequality (5). In order to have a com-
plete representation of the phase space, we intend to explore the portion in
which a resonance condition of the form

∑n
i=1 kiωi = 0 (with some integers

k1, . . . , kn ∈ Z\{0}) is satisfied in the integrable approximation. We define
the Arnold’s web as a suitable neighborhood of resonant orbits, whose size
depends on the perturbing parameter and on the order of the resonance, i.e.∑n

i=1 |ki|. The trajectories in the Arnold’s web can exhibit chaotic features.
The structure of the Arnold’s web was clearly explained in [3]; the nume-

rical investigation of its structure was recently performed on mathematical
models [37] and on physically interesting systems. We remark that the sta-
bility analysis in the frame of KAM theory has touched different fields of
physics. To give some examples, we mention the studies on beam-beam in-
teractions [45], asteroids diffusion [48] and galactic models [49]. These works
have been based on numerical applications using frequency-map analysis [39].
It is worthwhile to stress that the validity of the numerical investigations is
not only explanatory or didactic; indeed, while the KAM theorem describes
the persistence of regular orbits, a rigorous proof of the existence of instability
or irregularity in the Arnold web is a delicate problem.

In the following sections, we shall review a theoretical result due to Nek-
horoshev and we will introduce a numerical tool [25], which allows to detect
and to draw the Arnold’s web in a very detailed way [21]. Such analysis
also allows the study of transition from a stable to a diffusive regime [29].
We conclude by describing a numerical study [41] of the so-called Arnold’s
diffusion [3].

3.1 Nekhoroshev’s Theorem

A breakthrough in the solution of the problem of stability of the Hamilto-
nian quasi-integrable systems was provided by Nekhoroshev’s [47] theorem.
Contrary to the KAM theorem, Nekhoroshev’s result extends to an open set
of initial conditions; the price to pay is that the stability for infinite times is
replaced by the stability over long times. In particular, the stability time is
exponentially long with respect to the inverse of the perturbing parameter.
Therefore, the concept of long time stability is often equivalent in physical
problems to that of effective stability. To give an example, the infinite time
stability of Jupiter has no physical meaning since the solar system will end
in some 5 billion years!

Nekhoroshev’s theorem applies to quasi-integrable Hamiltonians of the
form

H(I, ϕ) = h(I) + εf(I, ϕ) , (I, ϕ) ∈ B × Tn , (6)
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where B is an open subset of Rn and Tn is the n-dimensional torus. We
assume that h and f are analytic functions and that ε is a small parameter.
Moreover, the integrable approximation h is required to satisfy a suitable
geometric condition, called steepness ([47], see also [30,6]). In the following,
we will assume for simplicity that h is a convex function (convex functions
satisfy the steepness condition). Under the above hypotheses, the theorem
states that, if ε is sufficiently small, any solution (I(t), ϕ(t)) of (6) satisfies
the following exponential estimate ([47], see also [7,43,51]):

‖I(t) − I(0)‖ ≤ I0 ε
a for |t| ≤ t0 e

(ε0/ε)b

, (7)

where I0, t0, ε0, a, b are suitable positive constants. In the convex case, one
can take a = b = 1/(2n) [43,51]. Therefore, for ε < ε0, the actions remain
close to their initial values up to exponentially long times. Unfortunately, as
it often occurs in perturbation theory, the purely analytical estimates of the
constants I0, t0, ε0 are quite unrealistic. This remark motivates the numerical
study for realistic models of physical interest.

The direct numerical check on the instability of the actions generally fails,
since actions are bounded up to an exponentially long time. Therefore, alter-
native numerical tools have been developed in the last ten years to investigate
the problem in an indirect way [36,39,40,15,23].

Actually, the hearth of the Nekhoroshev’s theorem is that the long time
stability of the actions occurs within a specific structure of the phase space:
the core is made up in large part of KAM tori, while the complementary part
is structured by the Arnold’s web. The numerical experiments are based on
checking for such a structure of the phase space.

3.2 Tools for Detecting Chaos and Order

In order to explore the phase space, a careful analysis of a large number of
orbits is required. The classical tool for discriminating between chaotic and
ordered orbits is the computation of the largest Lyapunov exponent, that we
recall as follows. Let us consider the differential equations:

d
dtX = F (X), X = (x1, x2, ..., xn) (8)

where F are suitable regular functions. The Lyapunov exponents are compu-
ted by integrating the equations of motion (8), together with the correspon-
ding variational equations:

dv

dt
= (

∂F

∂X
) v ,

where v is any n-dimensional vector. The largest Lyapunov exponent is defi-
ned as

γ = lim
t→∞ ln

||v(t)||
t

.
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If (8) is of Hamiltonian type, the largest Lyapunov exponent is zero for
regular motions and it is positive for chaotic orbits; this property has been
largely used to discriminate between chaotic and ordered motions. However,
among regular motions, the Lyapunov exponent does not distinguish between
KAM tori and resonant islands. When computing the Lyapunov exponents,
attention is focused on the length of time necessary to get a reliable value
of the limit; very little importance has been given to the beginning of the
integration, since it was considered a transitory regime, depending mainly on
the choice of the initial vector on the tangent manifold.

As already remarked in [25], chaotic, even weakly chaotic, and ordered
motion can be discriminated by looking at the value of log ||v(T )||, where
T is relatively small. The authors called the above quantity Fast Lyapunov
Indicator (hereafter FLI). It turns out that the FLIs also distinguish regular
resonant from non resonant motions (see [29] for an analytic explanation
using a Hamiltonian system) although the largest Lyapunov exponent is zero
for both cases.

The precise definition of the FLI can be stated as follows: given an initial
condition X(0) ∈ Rn and an initial vector v(0) ∈ Rn, the FLI is provided by
the relation [21,29]

FLI(X(0), v(0), T ) ≡ sup
0<t≤T

log ||v(t)|| , T ≥ 0 . (9)

For dissipative systems we refer the reader to an important work by Gold-
hirish et al. [27] concerning a procedure to extrapolate the value of the
Lyapunov exponents even on short time data sets. In recent years other
numerical tools have been introduced within the Celestial Mechanics com-
munity: the frequency map analysis [36,39,37], the sup-map analysis [38,22]
and the twist angle [15,23]. The twist angle is well suited for two dimen-
sional area-preserving maps. The frequency map and the sup-map analyses
can be applied to a generic system, but they are more expensive in terms of
computational time [24]. Moreover, as far as complexity is concerned, other
approaches have been proposed in the domains of fluid dynamics and turbu-
lence, for a review paper, the reader can refer to [8]. We remark that the FLI
is defined for each kind of orbit, while the frequency is not well defined for
chaotic orbits; moreover the FLI provides quantitative information about the
measure of chaos.

The Standard Map as a Model Problem

As a model problem, we consider the two-dimensional standard map
[19,42,14]:

M :
{
x(n+ 1) = x(n) + ε sin(x(n) + y(n)) (mod. 2π)
y(n+ 1) = y(n) + x(n) (mod. 2π) . (10)
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Fig. 2. A set of orbits of the standard map for ε = 0.6

In Fig. 2, we display some orbits of the standard map defined by (10) with
ε = 0.6. For ε = 0.6, the majority of the orbits are still invariant tori. Some
resonant curves are displayed around elliptic points and a chaotic zone is
generated by the existence of the hyperbolic point at the origin.

Figure 3 shows the variation of the FLI (defined in 9) with respect to
time for three different kinds of orbits. The upper curve, corresponding to
initial conditions (x, y) = (10−4, 0) selected in the previous chaotic zone,
shows an exponential increase of the FLI; the upper value of 20 is a threshold
that we impose in order to avoid floating overflow. The intermediate curve
corresponds to a regular invariant torus with initial conditions (x, y) = (1, 0)
and the lowest one describes a resonant trajectory with initial conditions
(x, y) = (0, 1).

In [24] the FLI was computed for a set of 1000 initial conditions, regularly
spaced on the x-axis in the interval [0, π], while y(0) was always set to zero.
Figure 4 shows the so-called FLI-map, i.e. the value of the FLI after T = 1000
iterations against x(0); here, v(0) was always taken in the direction of the
x-axis. Many orbits appear to have an FLI equal to the logarithm of the
integration time, i.e. log T = 3: actually, this value corresponds to invariant
tori [24,29].

Values slightly greater than log T indicate very thin chaotic layers or
invariant tori close to very thin chaotic zones. The orbits with an FLI lower
than log T correspond to chains of islands (for an explanation see [29]).

3.3 The Arnold’s Web Pictures for a Simple Hamiltonian Model

In this section we give a highly accurate graphical representation of the Ar-
nold’s web, obtained by implementing the FLI method. As an example, we
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Fig. 3. Variation of the Fast Lyapunov Indicator w.r.t. time for three orbits of the
standard map with ε = 0.6. The upper curve corresponds to a chaotic orbit with
initial conditions x(0) = 10−4, y(0) = 0; the middle one describes a non-resonant
orbit with x(0) = 1, y(0) = 0, while the lowest one concerns a resonant orbit with
x(0) = 0, y(0) = 1
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orbits regularly spaced in the interval [0, π]. The initial vector v(0) has components
(1, 0), i.e. it is almost perpendicular to the corresponding invariant curves
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consider the following Hamiltonian function:

Hε(I1, I2, I3, ϕ1, ϕ2, ϕ3) =
I2
1

2
+
I2
2

2
+ I3 + ε

(
1

cos(ϕ1) + cos(ϕ2) + cos(ϕ3) + 4

)
,

where I1, I2, I3 ∈ R and ϕ1, ϕ2, ϕ3 ∈ T are canonically conjugated, and
ε is a small parameter. The canonical equations of the integrable Hamil-
tonian H0 are trivially integrated: I1, I2, I3 stay constant, while the angles
ϕ1(t) = ϕ1(0) + I1t, ϕ2(t) = ϕ2(0) + I2t, ϕ3(t) = ϕ3(0) + t rotate with con-
stant angular velocity. Therefore, each pair of actions (I1, I2) characterizes
an invariant torus T3, on which motions are quasi-periodic with frequencies
ω1 = I1, ω2 = I2, ω3 = 1. Conversely, for any small ε different from zero,
Hε is not integrable. However, the KAM theory proves the existence of a
large volume of invariant tori, embedded in the Arnold’s web. Our goal is
to numerically determine the structure of the Arnold’s web, which can be
conveniently represented in the two-dimensional plane (I1, I2). Indeed, each
point on this plane corresponds to a unique frequency of an unperturbed
torus. Moreover, all resonances k1ω1 + k2ω2 + k3ω3 = 0 are represented by
the straight lines k1I1+k2I2+k3 = 0; the set of all resonances is dense on the
plane. However, one can expect that irregular orbits surround each resonance
line, up to a distance decreasing as

√
ε/|k|τ ; we refer to this region as the

resonant zone. Consequently, the volume of the Arnold’s web is of the order
of

√
ε. Let us briefly review the qualitative behaviour of the motions with

initial conditions in the Arnold’s web. Within resonant zones, both chaotic
and regular motions can be observed. Stable periodic orbits are surrounded
by islands in which the motion is still quasi-periodic, though the dimension of
the torus is strictly smaller than the number of degrees of freedom. Unstable
periodic orbits are surrounded by chaotic zones where Nekhoroshev’s theorem
predicts a diffusion with a velocity exponentially small with respect to −1/ε
in the action space. When increasing the strength of the perturbation, the
regular set shrinks until it almost completely disappears. In this case the dy-
namics is not controlled by Nekhoroshev’s theorem anymore. To describe it,
we resort to the well-known Chirikov [14] overlapping criterion which allows
the resonant chaotic orbits to go from one resonance to the other (eventually
giving rise to large-scale diffusion).

From Nekhoroshev to Chirikov

Using the FLI method, we proceed to describe the evolution from a mostly or-
dered system to a largely chaotic one, i.e. from the Nekhoroshev to the Chiri-
kov regime. To this end, we compute the FLI, using a leap-frog symplectic in-
tegrator on a grid of 500×500 initial conditions regularly spaced in the action
space (without loss of generality, we set the initial angles ϕ1 = ϕ2 = ϕ3 = 0).
The initial choice of the tangent vector plays a delicate role. Indeed, it turns
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out that resonances which are aligned with the initial tangent vector (ϕ̇1, ϕ̇2)
are not detected by the FLI method. In order to overcome this problem we
have chosen (ϕ̇1, ϕ̇2), such that ϕ̇1/ϕ̇2 is strongly irrational (the other com-
ponents İ1, İ2 play a minor role and we set them equal to unity). Some results
are presented in Fig. 5. In each picture, the initial conditions of I1 and I2
are associated to the corresponding FLI value by a different color. The lowest
values of the FLI appear in black and they correspond to the resonant islands
of the Arnold web; the highest values appear in white and they correspond to
chaotic motions, arising at the crossing nodes of resonant lines or arising near
the separatrices. The FLIs corresponding to KAM tori have approximately
the same value, and therefore the same grey color. Therefore, the resonant
lines clearly appear to embed large zones filled by KAM tori (see Fig. 5 (top,
left) and the enlargement shown in Fig. 5 (top, right)). Since the perturbation
has a full Fourier spectrum, i.e. all harmonics are present at order ε, a high
number of resonances is already present for small ε (Fig. 5 (top)); we remark
that all resonances should appear just by increasing the integration time. In
contrast, in Fig. 5 (middle), which refers to ε = 0.01, the volume of the inva-
riant tori decreases, though the system is still in the Nekhoroshev regime. In
these figures, following the Nekhoroshev theorem, the chaotic regions become
evident at the crossing of the resonances. In Fig. 5 (bottom), which refers to
ε = 0.04, the dynamical regime has completely changed. As outlined before,
the majority of invariant tori has disappeared due to resonance overlapping,
and a big chaotic connected region has replaced the regularity set.

In conclusion, using a very simple numerical tool, we described the struc-
ture of the Arnold’s web and its evolution as a function of the perturbing
parameter. We observed a transition from an ordered to a chaotic diffusive
system, occurring for 0.01 < ε0 < 0.04 (ε0 being defined by (7)).

Detection of the Diffusion

Following Nekhoroshev’s theorem, we expect a very slow diffusion of the
actions along the resonances, which is very difficult to detect numerically. The
idea of such diffusion was introduced by the pioneering work of Arnold [3],
using an ad hoc model. Since then, it is called Arnold’s diffusion. According
to (7), when ε is close to ε0, i.e. to the transition from the stable regime to the
diffusive one, the actions can quickly become unstable. Therefore, in order
to measure Arnold’s diffusion, we need to start close to ε0. In the previous
section, we found that the transition occurred in the interval 0.01 < ε0 < 0.04
(this interval was confirmed and refined to 0.0300 < ε0 < 0.032 in [29]). We
used the FLI pictures to find chaotic initial conditions on a given resonant
line, as well as to observe that diffusion occurs along this line.

Figure 6 shows some enlargements of the FLI pictures in the action space,
around I1 = 0.3 and I2 = 0.14, for different values of ε. The region between
the two white lines corresponds to the resonance associated to I1 − 2I2 = 0,
while the two white lines correspond to its hyperbolic border, where diffusion
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Fig. 5. Evolution of the Arnold web for increasing values of the perturbing parame-
ter ε. The lowest values of the FLI appear in black for the regular resonant islands;
the highest values appear in white for chaotic motions arising at the crossing nodes
of resonant lines or arising near the separatrix. The FLI corresponding to KAM
tori have about the same value, represented in the picture by the same grey color.
Left column: a large portion of the action plane; top: ε = 0.001, T = 1000; middle:
ε = 0.01, T = 1000; bottom: ε = 0.04, T = 1000. Right column: enlargement of
the figures on the left, obtained with a larger integration time; top: ε = 0.001,
T = 4000; middle: ε = 0.01, T = 2000; bottom: ε = 0.04, T = 2000 (from [21])
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Fig. 6. Diffusion along the resonant line I1 = 2I2 for ε = 0.003 (top), ε = 0.007
(middle), ε = 0.02 (bottom) of a set of 100 initial conditions in the hyperbolic border
of the resonance within the interval 0.303 ≤ I1 ≤ 0.304 and 0.143 ≤ I2 ≤ 0.144.
Black points correspond to the intersections of the orbits on the double section
|ϕ1| + |ϕ2| ≤ 0.05, ϕ3 = 0. The integration times are respectively: 107 (top, left),
108 (top, right), 106 (middle, left), 2.4 · 107 (middle, right), 1.6 · 104 (bottom, left),
5 · 105 (bottom, right). As in Fig. 5 a grey scale, ranging from black to white, is
used for identifying different regions (from [41])
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is confined. Graphical inspection provides the possibility of choosing initial
data in the hyperbolic border. We can follow the evolution of the solution
by computing the double section of the solution: σ = |ϕ1| + |ϕ2| ≤ 0.05,
ϕ3 = 0. This strategy minimizes all projection effects and fast quasi-periodic
motions; therefore, we can observe a very slow drift along the border of the
resonance.

We considered 100 initial conditions in the interval 0.303 ≤ I1 ≤ 0.304,
0.143 ≤ I2 ≤ 0.144, having FLI values larger than 1.2·log(T ); such initial data
generate chaotic orbits at the border of the resonance and they are chosen
far from the more stable crossing with other resonances. Let us remark that
the points in the double section will appear on both sides of the resonance
(in fact the two white lines are connected by a hyperbolic region in the six
dimensional phase space).

Figure 6 (top, left) provides the successive intersections with σ ≤ 0.05,
ϕ3 = 0, up to a time t = 107; Fig. 6 (top, right) extends to t = 108. Even if
the perturbing parameter is one order of magnitude lower than the threshold
ε0, the diffusion phenomenon along the resonant line clearly appears. When
decreasing ε to the minimum value ε = 0.001, we detected diffusion along
the resonance with smaller and smaller speed. For ε = 0.007 (Fig. 6 (middle,
left) for t = 106, Fig. 6 (middle, right) for t = 2.4 · 107), one obtains similar
results, though the speed of diffusion is larger. For ε = 0.02 (Fig. 6 (bottom,
left) for t = 1.6 · 104, Fig. 6 (bottom, right) for t = 5 · 105), diffusion along
the resonance is still evident, although it extends a little in the direction
transverse to the resonance. This phenomenon is due to the fact that we are
approaching the transition value and higher order resonances intersecting the
main one become evident. When approaching the critical value, we expect a
large chaotic region to replace the zone of invariant tori, giving rise to fast
diffusion.

Measuring the Diffusion Coefficient

Though an exhaustive analytic model does not yet exist, we tried to measure
a diffusion coefficient as if the phenomenon was Brownian-like. The numerical
experiments are constrained by computational limitations, since we have to
find a compromise between the number of initial conditions and the length
of the integration time. We observed an average linear increase with time,
with slope D, of the mean squared distance from the initial conditions. More
precisely we computed the quantity:

S(t) =
1
N

N∑

j=1

[(I2,j(t) + 2I1,j(t)) − (I2,j(0) + 2I1,j(0))]2 , (11)

where I1,j(0) and I2,j(0), j = 1, ..., N , are the initial conditions of a set of
N orbits and I1,j(t) and I2,j(t) are the corresponding values at time t. The
term in the square brackets of (11) represents the square of the distances of
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Fig. 7. Computation of the diffusion coefficient as a function of 1/ε. The change of
the slope of the three power–law fits agrees with the expected exponential decrease
of D (from [41])

the actions from the initial values, projected on the resonant line I1 = 2I2.
The estimates of D versus 1/ε are provided in Fig. 7 on a logarithmic scale.
Clearly, we can exclude a linear regression, which would correspond to a power
law D(ε) = C (1/ε)m. For some different sets of data, we performed local
regression, finding different slopes. In particular, the results are the following:
the set containing the values of D for 1/ε ≤ 55 has slope m = −4.5; the set
for 62 ≤ 1/ε ≤ 250 has m = −6.9; the set with 1/ε ≥ 330 has m = −8.8. The
changes in the slopes agree with the expected exponential decrease of D. An
exponential fit of the form D(ε) = C ′ exp(−κ/ε)α (for some parameters κ and
α) requires a larger ε-range, which is beyond our computational possibilities.
To give en example, the value of D for 1/ε = 1000 (see Fig. 7) required 4
months of CPU time on a fast workstation (Compaq AlphaStation XP1000
6/667 Mhz).
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Sciences 1, Tome XXVIII, Paris (1860)

17. J.-P. Eckmann, P. Wittwer. Computer methods and Borel summability applied
to Feigenbaum’s equation. Springer Lecture Notes in Physics, 227 (1985)

18. C. Falcolini, R. de la Llave. A rigorous partial justification of Greene’s criterion.
J. Stat. Phys., 67, n.3/4, 609 (1992)
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21. C. Froeschlé, M. Guzzo, E. Lega. Graphical evolution of the Arnold’s web, from
order to chaos. Science, 289 N.5487, 2108 (2000)



58 A. Celletti, C. Froeschlé, and E. Lega
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Paris (1899)
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Abstract. We give a brief overview of complex dynamical behavior characterized
by singular continuous (fractal) Fourier spectra. After presenting a simple example
of an aperiodic symbolic sequence we discuss different dynamical mechanisms of
such unusual correlation properties. Examples include hydrodynamical flows and
dissipative dynamical systems described by ordinary differential equations.

1 Introduction

In his memoirs A.N. Kolmogorov mentions that, in his treaties on classical
mechanics, he was greatly influenced by the works by John von Neumann on
the spectral theory of dynamical systems and by the classical work of Bogol-
jubov and Krylov. In this paper we would like to present recent interesting
examples of the spectral properties of dynamical systems; significant progress
in this field due in large part to the contributions of the mathematicians be-
longing to the school of A.N. Kolmogorov.

The term “spectral theory of dynamical systems” has a twofold mea-
ning. The first is rather pragmatic and stems from the statistics and signal
processing. Here a dynamical system (e.g., a system of ordinary differential
equations) is considered as a “source” of a stationary process – periodic, qua-
siperiodic, chaotic – and one calculates the Fourier spectrum of this process.
Typically, this procedure follows the recipes for the stationary random pro-
cesses, so that the dynamical system is characterized by the power spectrum
of one of its observables. Numerically, one often uses the power spectrum to
distinguish a periodic process (whose power spectrum is a series of what a
physicist calls “delta”-peaks and a mathematician calls “point spectrum”)
from a chaotic one, whose spectrum is continuous. As we shall see below, in
between of these cases, there is also a possibility of having a fractal power
spectrum – the object of our main interest in this paper.

The spectrum in the above sense is obviously a non-invariant characte-
ristic of the system, since it depends on the observable. This drawback is
not present in the operator-based approach to a spectrum of a dynamical
system, pursued by J. von Neumann after the pioneering work by Koopman.
Inspired by the development of quantum mechanics, Koopman and von Neu-
mann suggested the treatment of classical dynamical systems (e.g. systems
of ordinary differential equations) by using evolution operators acting on the
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observables – functions of the phase space variables. In this way the evolu-
tion in time is described by a linear operator, called Koopman operator. Now
the “spectral theory” means a study of a spectrum of this operator. In this
interpretation, the spectrum, like in quantum mechanics, is a set of possible
values of frequencies. A particular power spectrum of an observable is in this
language a spectral measure, resulting from the spectral expansion of the
corresponding function.

Although mathematically deeper, the operator approach to the spectra
of dynamical systems is not very helpful in practice, because contrary to
the case of the Hamilton operator in quantum mechanics, the spectrum of
the Koopman operator generally cannot be found, even numerically. We will
therefore mainly use the signal-based approach in our presentation below.

We have already mentioned the two main types of spectra: discrete and
continuous. The discrete spectrum includes not only the case of periodic dy-
namics, but also the quasiperiodic one, where several basic incommensurate
frequencies (i.e. frequencies whose ratio is an irrational number) and their
combinations are present. In terms of the autocorrelation function (assumed
to be normalized, so that the maximum value at zero time is one) of the
process, which is the Fourier transform of the power spectrum, the discrete
case corresponds to a periodic function which returns to unity for a periodic
motion, and to regularly returning almost to unity function for a quasiperi-
odic motion. Remarkably, the proof of the discreteness of the spectrum for a
smooth flow on a 2-torus has been presented by A. N. Kolmogorov in 1953 [1].
Among the conditions which enable the discreteness, formulated by Kolmogo-
rov, is the absence of the equilibrium points; we will discuss the implications
that violation of this condition has on the spectrum in the final section of
this chapter.

Another popular type of spectrum is a continuous one, here the auto-
correlation function decays, which corresponds to mixing – a strong chaotic
property. However, such a characterization is not complete. A continuous
spectrum, like any continuous measure, can have finite density – and this
is the usual case for an absolutely continuous spectrum, but it can also be
concentrated on a set of measure zero, e.g. on a fractal. The latter case is cal-
led singular continuous, or fractal, spectrum. It corresponds to the dynamics
that can be classified as those between order and chaos.

We start with a simple example, the Thue–Morse symbolic sequence,
which will allow us to give a clear view of a fractal spectrum and of the
corresponding properties of correlations (Sect. 2). In Sect. 3, we demonstrate
that this symbolic sequence can be directly applied to the description of cer-
tain dissipative dynamical systems at the border between order and chaos.
We will show that a nontrivial symbolic representation can be responsible for
the complex features of the spectrum; it is also a particular property of tra-
jectories to stick at some places in the phase space. This second mechanism
works in our last example – a static incompressible two-dimensional fluid flow
(Sect. 4).
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2 Thue–Morse Sequence: A Nontrivial Example
of Complex Symbolic Coding

Symbolic sequences are the simplest objects allowing one to introduce and
study the notions of determinism, randomness, and complexity (see, e.g., [2]).
They appear quite naturally as “codes” for the trajectories of deterministic
dynamical systems. In the investigations of fractal spectra, the most conve-
nient way to understand the structure of the spectrum and the correlation
function is to look at a simple sequence of two symbols, first introduced by
A. Thue and M. Morse about a century ago [3,4]. While working on the
spectral theory of discrete processes, N. Wiener used this sequence (with-
out calling it by name) as an example of an object where the spectrum was
neither discrete nor absolutely continuous [5,6].

The Thue–Morse sequence is constructed with two symbols; we will first
denote them with letters A and B. There are several equivalent definitions
which describe the same symbolic object. One is based on the repetitive
substitutions – inflations – of an initial sequence. Here each element in a
sequence is substituted by two according to the following rule:

A → AB , B → BA .

If we start with an initial sequence having one symbol M0 = A, then the
substitutions lead to sequences of lengths 2, 4, 8, . . . :

M1 = AB , M2 = ABBA , M3 = ABBABAAB , . . . . (1)

Another definition of the Thue–Morse sequence is based on concatenations,
as follows: given a symbolic string Mn of length 2n we append to it the string
Mn which is obtained from Mn by exchanging all the symbols : A ↔ B. One
can easily check that application of this rule to M0 = A produces exactly the
strings as above.

The construction above suggests that the complexity of the Thue–Morse
sequence is small. Kolmogorov has suggested to define the complexity of a
finite string as a minimal length of a program (on a universal computer, such
as a Turing machine) that produces this string and halts after that [7]. From
this definition, it is clear that the algorithm for the generation of the Thue–
Morse sequence is compact, and the only additional information needed to
proceed to longer strings is that about the length of the string – and it grows
as a logarithm of the length. Thus, the complexity per one symbol tends
to zero for long pieces of the Thue–Morse sequence (the same is of course
true for all other sequences obtained by inflations or concatenations), which
corresponds to our intuitive conception of full predictability.

Next we will argue that the predictability of the Thue–Morse sequence is
not trivial, since one cannot formulate it as repetition of some of its pieces.
Indeed, this sequence is not periodic: one cannot find a repeated subsequence.
Moreover, there are no long subsequences which are repeated with minor
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Fig. 1. Autocorrelation function of the Thue–Morse symbolic sequence in two re-
presentations of the time scale – linear (a) and logarithmic (b). In the logarithmic
scale, it is evident that the correlations do not decay, though they become more
and more rare

modification as for quasiperiodic sequences. To see this, we need to calculate
the correlation function and the power spectrum. The first step is in assigning
numerical values to the symbols. In the case of two symbols, this assignment
is straightforward: we replace A by +1 and B by −1. Notice that due to
symmetry A ↔ B, the mean value of the resulting sequence xk vanishes.

Recall that the autocorrelation function of a sequence xk is defined as

C(t) = 〈xkxk+t〉 = lim
T→∞

1
T

T∑

k=1

xkxk+t .

The recursive way of constructing the Morse–Thue sequence suggests that the
autocorrelation function obeys some recurrences. These can be formulated
as [8]

C(2t) = C(t) , C(2t+ 1) = −C(t) + C(t+ 1)
2

.

These relations, combined with the “initial condition” C(0) = 1 allow one
to obtain the exact values of C(t) for any t. The autocorrelation function
is depicted in Fig. 1. It has peaks of height −1/3 at t = 1, 2, 4, 8, . . . and
of height 1/3 at t = 3, 6, . . . . These peaks characterize some repetitions in
the sequence and, because their height is not close to one (as it would be
for quasiperiodic processes), the repetitions are not exact, but approximate.
However, the correlations do not decay with time as for random and chaotic
processes.

A similar recurrence can be written for the power spectrum. It is conveni-
ent to represent it as a limit of the spectra obtained from the finite strings. If
we take a string of length 2n, the corresponding approximation to the power
spectrum can be written as

Sn(ω) =
1
2n

∣∣∣∣∣

2n∑

k=1

xke
2πikω

∣∣∣∣∣

2

.
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Now we use the fact that due to the concatenation rule above, the second
half-string x2n−1+1 . . . x2n is the first half-string x1 . . . x2n−1 with the opposite
sign. Thus

2n∑

k=1

xke
2πikω =

(
1 − e2πi2n−1ω

) 2n−1∑

k=1

xke
2πikω .

and the approximations to the power spectrum obey

Sn(ω) = (1 − cos(2nπω))Sn−1(ω) .

Iterations of this relation lead to a representation of the power spectrum as
an infinite product called the Riesz product. The spectrum has many peaks
but no delta-peaks, and therefore has no discrete component. It is fractal, or
singular continuous. One gets an impression of this object when considering
approximations to Sn, Fig. 2.

Note that although fractality of the spectrum sounds impressive, in prac-
tical calculations it is not convenient to look at because the spectrum does
not converge to a finite form. In contrast, the autocorrelation function, which
is the Fourier transform of the spectrum, is well-defined and one can easily
calculate an approximation to it for a finite range of time shifts t. One can
therefore formulate a practical approach to the investigation of processes
with fractal spectra: one calculates the autocorrelation function, and per-
sisting peaks in it (usually at logarithmically periodically placed values of
time) indicate a fractal spectrum.

Moreover, one can use the autocorrelation function to calculate important
characteristic of the fractal spectrum: its correlation dimension D2. To this
end one defines the integrated autocorrelation function

Cint(T ) =
1
T

T∑

t=0

C2(t) .

According to Wiener [5], a vanishing Cint(∞) implies the absence of the
discrete component in the spectrum. The decay rate of the integrated auto-
correlation function for large T is related to the correlation dimension of the
spectrum according to the formula [9]

Cint(T ) ∼ T−D2 .

Remarkably, for the Thue–Morse sequence, this dimension can be calculated
exactly [8]

D2 = 3 − log(1 +
√

17)
log 2

= 0.64298 . . . .



66 M. Zaks and A. Pikovsky

n=6

0.0 0.1 0.2 0.3 0.4 0.5ω
0

5

10

S
n

n=12

0

40

80

120
S

n

Fig. 2. Two approximations to the fractal spectrum of the Thue–Morse sequence.
Notice different vertical scales due to growth of the peaks with increasing n. Both
the peaks and the holes are eventually everywhere dense, so that the limiting object
is difficult to depict

3 Attractors with Fractal Spectra: From Symbolic
Encoding to Singularities of Return Times

Symbolic codes are interesting not only in themselves. As explained in Chap. 4
of this volume which is devoted to entropy, chaos and complexity, strings of
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symbols naturally arise in descriptions of trajectories of dynamical systems:
phase space is partitioned into regions, each of which is denoted by a symbol,
and the trajectory which alternately enters those regions, is encoded by a
symbolic string. If a partition of the phase space reflects the properties of the
dynamical system, the trajectory and the resulting symbolic sequence share
many characteristics.

Keeping this in mind, it would be reasonable to expect that a dynamical
system with an attractor encoded by the Thue–Morse sequence possesses a
singular-continuous Fourier spectrum [10].

An example of such attractor is delivered by three differential equations:

ẋ = σ(y − x) + σDy(z −R)
ẏ = Rx− y − xz (2)
ż = xy − bz ,

given appropriate parameter values. A few words about the origin of these
equations [11]: They model nonlinear regimes of convection in a layer of
non-isothermal fluid subjected to the transverse high-frequency modulations
of gravity. It is known that vibrations suppress small-scale fluid motions;
it makes sense therefore to truncate the Fourier expansion of the Boussinesq
equations of convection, retaining just one large-scale mode (denoted by x) for
the velocity field and two modes (y and z) for the temperature distribution,
and neglect the higher modes. The parameter D characterizes the intensity of
vibration and is given by the squared ratio of the modulation amplitude to its
frequency. At D = 0 (no vibrations, static gravity field) the system turns into
the familiar Lorenz equations [12]. The rest of the parameters have the same
meaning as in Lorenz’s paper: σ is the Prandtl number of the fluid (ratio of
kinematic viscosity to thermal diffusivity), R is the Rayleigh number which
measures the strength of the buoyancy force, and b is the geometric parameter
defined through the wavelength of the flow.

On part of the border between order and chaos in the parameter space,
the attracting set of (3) can be encoded by the Thue–Morse sequence. In
order to make sure that this is really the case, it is helpful to consider the
whole bifurcation scenario which leads from the steady quiescent state to
irregular oscillations [13]. An important property of the equations is their
invariance with respect to the transformation (x, y) ⇔ (−x,−y). Therefore
every attracting set in the phase space is either self-symmetric (invariant
under the transformation), or has a symmetric “twin”. A phase portrait of a
time-dependent state is built from alternating rotations “around” (in a some
rough sense, which is quite sufficient for us) two unstable fixed points, one
of them in the half-space x > 0 and the other in the half-space x < 0. The
partition which we choose is rather simple: we denote each turn of the orbit
in the half-space x > 0 by the symbol A and each turn in x < 0 by B.
Obviously, in the case of periodic dynamics, the infinite symbolic sequence
is also periodic; if the orbit in the phase space closes after N turns, we call
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the initial N letters in its symbolic code a “label”. For a starting symbol we
take the outermost turn on the (x, z) projection; in the case of two symmetric
largest turns, the sequence starts with the “positive” one (i.e. with A).

For a route to chaos in the parameter space of (3), we fix the “traditional”
values of σ = 10 and b = 8/3 [12], take some fixed value of D and increase
R from zero (physically, this corresponds to the growth of the temperature
difference across the fluid layer). If the chosen value of D is small enough, the
bifurcation sequence of the Lorenz equations is reproduced: a steady state at
the origin O (x = y = z = 0) is replaced by two symmetric fixed points;
these points lose stability by way of the subcritical Hopf bifurcation and
yield to chaos [14]. However, under moderate intensity of vibrations (0.05 <
D < 0.09), the scenario of transition to chaos is different. Here, the increase
of R leads from stable steady states to stable periodic oscillations. In the
phase space, such oscillations are presented by periodic orbits (Fig. 3a); their
symbolic codes are AAA . . . and BBB . . . , respectively.

The origin O is a saddle-point in this parameter region. When the value
of R is increased, both the amplitude and the period of the oscillations grow
(Fig. 3b) until, at a certain bifurcation point, the closed curve “touches”
O and forms a so-called homoclinic (bi-asymptotic) orbit to the origin: the
solution tends to x = y = z = 0 both at t → −∞ and at t → +∞. Due
to the symmetry, the second closed curve also forms the homoclinic orbit.
In this way, two closed curves in the phase space “glue together” (Fig. 3c).
When the parameter R is increased beyond this critical value, the homoclinic
orbit is destroyed; it leaves a unique stable periodic solution, which consists
of two turns in the phase space, and is self-symmetric (Fig. 3d). In some
sense this gluing bifurcation can be viewed as a kind of “doubling”: doubling
of the length of the attracting curve in the phase space. (In contrast to the
conventional period-doubling, the temporal period of an orbit is not doubled
at this bifurcation. Instead, it grows to infinity and then decreases again).
The symbolic code of this new orbit is ABABAB . . . . In terms of the labels,
the gluing bifurcation is merely a concatenation: the labels of previously
existing orbits A and B are glued together and constitute the new label AB.
Further increase in R leads to the symmetry crisis of this state: two new
stable periodic orbits bifurcate from it (Fig. 3e). They also consist of two
turns in the phase space, and the symmetry transformation maps each orbit
onto the other one. For one of the orbits the larger of two turns lies in the
half-space x > 0; this orbit retains the label AB. Since for the “twin” orbit
the situation is opposite, its label is BA.

As R increases further, the outermost turns of these two orbits grow until
they touch the origin O. This is another homoclinic bifurcation: the trajectory
which starts infinitesimally close to the origin returns back to it, this time
after two turns in the phase space (Fig. 3f). Two periodic orbits are now
glued together. A further increase of R beyond this bifurcation value leaves
in the phase space a unique stable periodic orbit which consists of 4 turns.
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Fig. 3. Evolution of the attracting set. a,b two periodic orbits labelled A and
B; c two homoclinic orbits; d single periodic orbit labelled AB; e periodic orbits
labelled AB and BA; f two 2-turn homoclinic orbits. Solid line: orbits whose labels
start with A; dashed line: orbits whose labels start with B

Again, the labels are concatenated: AB + BA → ABBA. This is followed
by another symmetry crisis, and so on.

Thus we see that in the parameter space two kinds of bifurcations al-
ternate. The first one is the homoclinic bifurcation which glues two stable
periodic solutions into a single self-symmetric one (with doubled length in
the phase space), while the second is the symmetry-breaking pitchfork bi-
furcation: a stable self-symmetric solution gives birth to two stable solutions
which are mutually symmetric.

From the point of view of symbolic labels, the first kind of bifurcation is a
concatenation of two sequences into a single one. Bifurcations of the second
kind can be viewed as a kind of “negation” on the binary alphabet: out of
a given symbolic string they produce its mirror image. The evolution of the
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Fig. 4. a Attractor with the Thue–Morse symbolic code at the accumulation of
the bifurcation scenario; b autocorrelation and c integrated autocorrelation for the
variable x on this attractor

labels of attracting sets proceeds as follows:

A
B

→ AB → AB
BA

→ ABBA → ABBA
BAAB

→ ABBABAAB → . . . . (3)

We recognize in this description the building rule of the Thue–Morse sequence
(see (1)). The attracting set of (3), which emerges at the accumulation point
of the bifurcation scenario, is plotted in Fig. 4. This set is vaguely reminiscent
of the Lorenz attractor with its two lobes; in contrast to the latter, however, it
does not look like a densely filled folded band, but displays a well-pronounced
self-similar structure. Of course, the symbolic code of this attractor is nothing
else but the Thue–Morse sequence.

Indeed, the computation of the autocorrelation gives evidence that the
Fourier spectrum is singular continuous. For the observable x(t), according
to Fig. 4b, the autocorrelation does not ultimately decay: it displays an ap-
proximate log-periodic pattern like in the case of the Thue–Morse sequence.
The largest values of t on this plot correspond to ∼ 5000 average durations
of one turn in the phase space. Accordingly, the Fourier spectrum cannot be
purely absolutely continuous. The integrated autocorrelation, on the other
hand, systematically decays by several orders of magnitude within the same
time interval (Fig. 4c). This indicates the absence of a discrete component
in the spectrum. The only remaining possibility for the spectrum is to be
fractal.

Upon closer inspection, however, we notice a remarkable distinction bet-
ween the autocorrelation of the Thue–Morse sequence and that of the variable
x from (3): in the latter case, the largest negative peaks (“anticorrelations”)
are much more strongly pronounced than their positive counterparts. It ap-
pears that the description of dynamics with the help of the symbolic code is
somewhat incomplete. Checking for the reason of this minor but nevertheless
noticeable discrepancy, we replace the continuous flow (3) by the discrete
dynamical system: the return (Poincaré) mapping induced by this flow. As
seen in the phase portrait in Fig. 4, the trajectories on the attractor return
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Fig. 5. One-dimensional return mapping (4) with ν=2.0, µ=1.40155189, its corre-
lation function (b) and integrated autocorrelation (c)

again and again to the region around the origin O. In order to quantify these
returns, we position a plane perpendicular to the z-axis close enough to the
origin. The return mapping relates the coordinates (xi, yi) and (xi+1, yi+1)
of two subsequent intersections of this plane by an orbit of the flow. The
flow is strongly contracting; within one turn of the orbit (that is the time
which separates two intersections of the plane), the phase volume is squeezed
so strongly that the image of a rectangle is nearly a one-dimensional curve.
Therefore for all practical reasons it is sufficient to consider a one-dimensional
return mapping. Before writing it explicitly, we note that in this parameter
region the linearization matrix of (3) near the origin has three real eigenva-
lues; we order them as λ1 > 0 > λ2 > λ3. The ratio ν = |λ2|/λ1 is called the
saddle index.

It can be rigorously shown that the one-dimensional return mapping is
reducible to the form

ξi+1 = ( |ξi|ν − µ ) sign ξi + higher order terms . (4)

Here, the coordinate ξ is a linear combination of x and y, whereas µ is the
parameter whose variation largely corresponds to the variation of R in (3).
The value µ = 0 describes the situation in which a trajectory starting in-
finitesimally close to the origin O, returns back to O; of course, this is the
homoclinic bifurcation shown in Fig. 3c.

A graphical representation of (4) is sketched in Fig. 5. Due to the mirror
symmetry of the flow, the mapping is odd: its graph consists of two sym-
metric branches. The orbits of the flow can leave the neighbourhood of the
origin either in the direction of x > 0 or in the direction of x < 0; in the
mapping, this is reflected by the discontinuity at ξ = 0. To mimic the bifurca-
tion scenario of Fig. 3, one needs to have ν > 1 (the parameter region ν < 1
corresponds to a different scenario: the Lorenz-type transition to chaos [14]).
For a fixed value of ν > 1, the increase of µ leads to a sequence of bifurcations
in which either two periodic states are glued together into a symmetric one
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(and the period is doubled), or a self-symmetric periodic attractor undergoes
a pitchfork bifurcation, giving birth to two mutually symmetric stable peri-
odic orbits. By introducing the simple partition: symbol A for each point of
the orbit in the domain ξ > 0 and symbol B for each point with ξ < 0, we
see that each pair of bifurcations results in the concatenation of a symbolic
label with its binary “negation”. Of course, this bifurcation scenario culmi-
nates in the attractor whose symbolic code is the Thue–Morse sequence. It is
not surprising then that the autocorrelation function of the observable ξ on
this attractor has the familiar log-periodic pattern (Fig. 5b). Moreover, the
correspondence is much better than in the above case of the observable from
the continuous flow: except for the short initial segment the balance between
the largest correlations and anticorrelations is reproduced, and, even quan-
titatively, the values of C(t) at the highest peaks practically do not decline
from the Thue–Morse mark 1/3. This shows that from the spectral point of
view, the discrete dynamical system described by the mapping (4) is closer
to the Thue–Morse binary sequence than the continuous flow (3): the Fourier
spectrum of the latter is also singular continuous but is a bit different from
a quantitative point of view.

Before we proceed with an interpretation of this difference, it is worth
noting that graphically, the return mapping looks like a symmetric unimodal
mapping (e.g. the famous logistic one) whose right branch has been flipped.
Indeed, there exists a connection between the bifurcation sequence in (4) and
the universal period-doubling scenario [13]. There is also a quantitative distin-
ction: in systems which exhibit period-doubling, the extremum of the return
map is generically quadratic. In dynamical systems with homoclinic bifurca-
tions, the saddle index can take any real value and ν = 2 (which corresponds
to the “flipped” quadratic map) is by no means singled out. This metric di-
stinction causes differences e.g. in scaling constants like the convergence rate
of the bifurcation sequence, etc. For us, however, another difference is more
significant: the Fourier spectrum of a system at the accumulation point of the
period-doubling bifurcations is purely discrete [15]. Accordingly, this system
is well correlated: C(2n) → 1.

All this has direct consequences on the type of dynamics which we consi-
der. Reduction of (3) to the discrete mapping should not necessarily be done
in the above manner. Instead of using for the mapping a combination of va-
riables x and y, both of which participate in the symmetry transformation
(x, y) ⇔ (−x,−y), one can take the remaining variable z. For this, of course,
the Poincaré plane z = const should be replaced by a cylindrical surface (e.g.
z2 + y2 = const). Alternatively, one can follow the approach of Lorenz [12]
and write down the recursion relation for the subsequent maxima of z on the
orbit turns. Such mapping can be brought to the form

zi+1 = A|zi|ν − µ + higher order terms. (5)

In contrast to (4), this mapping turns out to be even and continuous. The
dynamics of the underlying equations (3) is related to the behavior of (5)
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Fig. 6. Autocorrelation for the variable z on the attractor from Fig. 4

in the following way: symmetry-breakings (pitchfork bifurcations) of periodic
orbits in (3) correspond to period-doublings in (5), whereas the formation of
homoclinic trajectories in (3) corresponds to “superstability” (passage of a
periodic point through the extremum) in (5). Accordingly, the attractor from
Fig. 4 with its singular continuous spectrum is matched in (5) by the period-
doubling attractor of the Feigenbaum type, whose spectrum is discrete.

This discrepancy cannot be reduced to the difference between the sym-
metry properties of the observables: by computing the autocorrelation of the
variable z(t) from (3), we observe the typical attributes of the fractal spec-
tral component (Fig. 6). This means that the continuous variable z(t) has
spectral and correlation properties which are qualitatively different from the
characteristics of its discretized counterpart zi.

At a first sight this situation appears to be unusual: the behavior of the
flow is less correlated (in other words, more complicated) than the dynamics
of the Poincaré mapping induced by it. This seems to contradict the common
practice in which the conclusions for the dynamics of the flow are drawn
from observation of the dynamics on the Poincaré system. In fact, there is
no contradiction. The necessary condition for adequacy of the mapping is
boundedness of time intervals between the returns onto the Poincaré plane.
For the attractor from Fig. 4 this condition is violated: the saddle point
at the origin belongs to the closure of the attractor, and trajectories pass
arbitrarily close by. During such passages, the velocity in the phase space
is arbitrarily small: the system “hovers” over the unstable equilibrium, and
the duration of such hoverings is unbounded. The nearly constant values of
the observables during these long intervals make substantial contributions to
the averaged characteristics of the trajectory, such as the autocorrelation or
the Fourier spectrum. On the other hand, in terms of the Poincaré mapping
these hoverings remain completely unaccounted.

In a sense, iterations of the return mapping are separated by time intervals
of variable length. In ergodic theory there exists an efficient tool for modeling
such situations. It is known under several different names: special flow, or flow
over the mapping, or flow under a function. This is a two-dimensional time-
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Fig. 7. Geometry and dynamics of special flows. a bounded return time, b unbo-
unded return time

continuous system in which one of the variables is piecewise-constant; lengths
of these “pieces” can be interpreted as durations of time intervals between
the iterations of the mapping.

To construct this flow, two functions are needed; we denote them f(x) and
F (x), respectively. The special flow is defined on the stripe of 2-dimensional
plane 0 ≤ y ≤ F (x), i.e. between the abscissa and the graph of F (x) (this
explains the origin of the name “under the function”). Dynamics of the flow
is illustrated by Fig. 7. Take some initial point (x0, y0) within this stripe.
From there the system moves upwards at unit speed; this means that x re-
mains constant, while y grows uniformly. On reaching the upper boundary at
the point (x0, F (x0)) the system makes an instantaneous jump to the point
(f(x0), 0) on the abscissa. From here the system again moves strictly up-
wards with unit speed until hitting the boundary at (f(x0), F (f(x0))). An
instantaneous jump leads from there to the point (f(f(x0)), 0) on the abs-
cissa, and the process repeats. Now, let the Poincaré section coincide with the
abscissa; then f(x) is the return mapping (that’s why “flow over the map-
ping”!), and F (x) is the return time. If F (x) is continuous and bounded, the
spectral properties of the flow are adequately represented by characteristics
of f(x). However, a singularity in F (x) becomes a source of discrepancy. Von
Neumann demonstrated that for f(x) with a discrete spectrum, a disconti-
nuity (a finite “jump”) in F (x) can generate the continuous component in
the spectrum of the flow [16]. In a system of differential equations with a
smooth right hand side, one would expect a divergence of return time rather
than a finite discontinuity; this is what happens in (3) for passages close to
the saddle point at the origin.

To demonstrate this effect, we compute the spectral characteristics for the
special flow over f(x) which corresponds to the return mapping (5) at the
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Fig. 8. Power spectra and autocorrelations for the special flow over the mapping
xi+1 = 1.40155189 −x2

i . Sample length 217. a,c bounded return time, b,d unboun-
ded return time

accumulation of period-doubling bifurcations. We use two different functions
F (x). The first of them, F1(x) = 3+0.08x− 1

2 sinx is bounded on the interval
of x which includes the attractor. The second one, F2(x) = 2 − ln |x| has a
singularity at the point x = 0 which belongs to the attractor. The computed
estimates of the power spectra and the autocorrelation functions are shown
in Fig. 8.

The power spectrum of the flow under the bounded function in the left
panel displays the well ordered structure of δ-like peaks at the main frequency,
its subharmonics and harmonics. The plot shows the averaged estimate for
sample of length 217; if the length is increased, these peaks become sharper
and thinner and the troughs between them deeper and broader. Results for
the flow under the function with a singularity are qualitatively different (right
panel): the contrast between the highest peaks and the deepest minima is not
so sharp. The whole pattern appears to be much more dense and (at least
optically) “much more continuous”.

The difference is more striking in the time domain, where we can com-
pare autocorrelations for these two different kinds of F (x). Panel (c) of Fig. 8
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shows autocorrelation for the special flow without the singularity; the time-
scale is conventional, and the returns of autocorrelation arbitrarily close to
1 are distinctly seen: The dynamics is “nearly periodic”, exactly as for the
mapping (5) itself. In contrast, the special flow with a singularity possesses
an autocorrelation (lower panel) whose pattern recalls the autocorrelations
of the Thue–Morse sequence and of the continuous variable z(t) from (3)
(cf. Fig. 6). This autocorrelation indicates to the presence of the singular
continuous spectral component.

This example confirms that the special attractor geometry reducible to
the particular (Thue–Morse and alike) symbolic code, is not a necessary pre-
condition for the existence of fractal spectral measure: a singularity in the
return times can be responsible for this effect as well. If both mechanisms
are acting simultaneously, as in the case of the observable x from (3), the
second one distorts the symmetric pattern of autocorrelation typical for the
first one. We are in an unexpected situation: the flow described by (3) was
brought in as an example of the continuous dynamical system in which the
Thue–Morse symbolic code stood behind the fractal spectral component. Now
we see that there is some redundancy: not only is this component present at
the accumulation of every scenario of gluing bifurcations, it also appears in
the absence of the mirror symmetry, when the symbolic codes themselves are
different from the Thue–Morse sequence. The only thing which matters are
the repeated passages arbitrarily close to the equilibrium point.

4 Fractal Spectra in Laminar Hydrodynamics

Currently we are unaware of examples of time-continuous dynamical systems
where the symbolic code is given by the Thue–Morse or similar sequence,
but where the return times are bounded. In contrast, examples of flows with
singularities of return times (e.g. saddle points embedded into the attractors)
are abundant. Indeed, this does not even require the 3-dimensional phase
space: two spatial dimensions are quite sufficient. Notably, on the plane the
repeated alternating passages close by and far away from the same point
are forbidden by geometry; however, they are quite possible on the surface
of a 2-dimensional torus. This brings us back to the problem of the spectral
properties of flows on 2-tori, posed and solved by A.N.Kolmogorov in 1953 [1]:
now we see that in his proof of the discrete spectrum the requirement of the
absence of fixed points is not a mere technical condition. Violation of this
condition (the existence of points, where the vector field vanishes) can create
the (singular) continuous component in the spectral measure.

In order to demonstrate this, we leave the somewhat abstract geometry
of phase spaces and refer to the “physical” geometry of trajectories of the
particles carried by the time-independent flow of a viscous fluid. Again, the
starting point is the problem which was proposed by Kolmogorov as an ex-
emplary candidate for studying hydrodynamical instabilities and transition
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to turbulence: in his seminar of 1959 the participants discussed the motion
of a viscous incompressible fluid which is disturbed by the spatially periodic
force acting in one direction (i.e. by the force which is directed along the
y-axis and is proportional to cosx) [17]. Experimentally such forcing can be
(and has been) implemented e.g. in electroconducting fluids by positioning
the lattice of electrodes on the bottom. This class of fluid motions, known
as the “Kolmogorov flow”, remains one of the most often used examples of
hydrodynamical transitions.

Here, we consider a modification of this problem [18]. Let the force act
along two spatial directions: the y-component of the force is proportional to
cosx whereas its x-component is proportional to cos y. We restrict ourselves
to two-dimensional steady (time-independent) flows for which the characteri-
stics (velocity v, pressure p) at each physical point remain constant. Further,
since the force is periodic, we require the velocity field to have the same
periodicity: 2π in each direction. In this way, the problem is formulated as
a fluid motion in a square with periodic boundary conditions; equivalently,
this can be viewed as the motion on the surface of a 2-torus. We also assume
that there is some constant mean drift across the square (ensured e.g. by the
constant pressure gradient): its components in the x- and y-direction are β
and α, respectively. Accordingly, the direction of the mean flow forms the
angle arctanβ/α with the x-axis.

The fluid is assumed to be incompressible. Mathematically, this is ex-
pressed through the condition div v = 0. Physically, this means that the
volume (the area in case of the 2-dimensional flow) of an arbitrary element
of fluid is time-invariant: the element can move, its shape can be distor-
ted by the flow, but the overall volume remains the same. This condition
allows us to relate the velocity to the so-called “stream function” Ψ(x, y):
vx = ∂Ψ/∂y, vy = −∂Ψ/∂x. The stream function “visualizes” the flow pat-
tern: in a steady flow the fluid particles move along the isolines of Ψ(x, y).

The velocity field which obeys the hydrodynamical equation reads as

vx = α− f cos(y + φ2)√
β2 + ν2

, vy = β − f cos(x+ φ1)√
α2 + ν2

, (6)

where f is the amplitude of the force, ν is the viscosity of the fluid, φ1 =
arctan ν

α and φ2 = arctan ν
β . At f = 0, in the absence of forcing, the velocity is

everywhere the same, and the motion of the fluid is simply the homogeneous
drift; mathematically, this is a linear flow on the torus with the winding
number α/β. If this number is irrational, every streamline is dense on the
surface of the torus; in other words, each passive particle transported by the
flow eventually passes arbitrarily close to any given place.

An increase in the forcing amplitude f distorts the streamlines (Fig. 9a).
Qualitatively however, the flow pattern does not change until, on reaching
the threshold value of the forcing amplitude

f = fcr =
√
α2β2 + ν2 max(α2, β2) , (7)
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Fig. 9. Flow patterns for different values of the forcing strength. Isolines of the
stream function for: a f = 0.5fcr; b f = fcr, (c) f = 1.5fcr. α = 1; β = −0.6018,
ν = 1

two turning points appear on the streamlines (Fig. 9b). Further increase
in f results in a qualitative transition, as two symmetric stationary vortices
emerge inside the flow. As seen in Fig. 9c, outside the vortices the flow retains
the globally drifting component, where each streamline is dense. There is an
elliptic stagnation point at the center of each vortex; the boundary of each
vortex is formed by the trajectory (called the “separatrix”) which starts and
ends at the same stagnation point of the saddle type. Of course, from the
dynamical point of view this boundary is just a homoclinic trajectory. The
time which one trajectory needs for one passage around the torus (we can
view this as the return time onto the boundary of the square) diverges when
the initial conditions are chosen infinitesimally close to the trajectory which
exactly hits the saddle stagnation point. On the other hand, the irrational
rotation number ensures that each trajectory of the global component passes
arbitrarily close to the stagnation point. Therefore the condition that was
discussed in the previous section is fulfilled: there is a region of the phase
space where the return time diverges, and there is a mechanism which ensures
that the orbits repeatedly visit this region. Therefore, it is reasonable to check
for the fractal spectral component.

The choice of the appropriate observable may deserve a short discussion.
Apparently, it makesf no sense to measure any characteristic of the flow at
a fixed location of the phase space: since the flow is time-independent, at
any given place all characteristics remain constant. Instead one can attach
the reference frame to the tracer particle floating along the streamlines: with
this particle the measuring device will visit the regions of relatively high and
relatively low velocity and explore the entire domain outside the vortices. In
fluid mechanics such description, associated with the moving fluid particle,
is known as “Lagrangian description”. For a particle carried by the flow, a
convenient observable is either of the velocity components.

The following plots confirm that the birth of vortices and stagnation
points at fcr marks a drastic transition in the spectral and correlation pro-
perties: as shown in Fig. 10a, for weak forcing the spectrum is apparently
discrete whereas for f > fcr (Fig. 10b) it possesses a well-pronounced self-
similar structure, typical for fractal sets.
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Fig. 10. Estimates of power spectrum and autocorrelation for the tracer velocity.
a,c f = 0.5fcr; b,d f = 1.5fcr

In terms of autocorrelation, the flow without the vortices is characterized
by a nearly periodic sequence of peaks with height tending to 1 (Fig. 10c).
After the birth of the vortices, this picture is replaced by a lattice where
the largest peaks have moderate height and the time intervals to which they
correspond form an approximate geometric progression.Thus, the presence
of stagnation points, combined with irrational inclination of the mean drift
ensures that the Fourier spectrum is fractal.

Extending our excursion into fluid mechanics, let us demonstrate another
example of two-dimensional motion of viscous fluid with the stagnation effect:
the time-independent flow past a periodic array of solid obstacles [19]; the
typical flow pattern is shown in Fig. 11. Due to viscosity, the velocity field
identically vanishes along the whole borderline of each obstacle. In compari-
son with the previous example where the velocity vanished only in isolated
stagnation points, we find that the singularity in the return time is much
stronger (mathematically, the logarithmic singularity is replaced by the in-
verse square root). As a result, the spectrum of the tracer velocity is (of
course!) fractal, and the autocorrelation function decays: the peaks become
progressively smaller and eventually vanish (Fig. 12).

In the real space, the presence of a continuous spectral component has
far-reaching implications: this steady laminar flow is mixing ! This property is
illustrated by Fig. 13 which shows the evolution of the initially round droplet
consisting of 104 dye particles. For convenience, here we project the position
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Fig. 11. Steady flow past the lattice of cylinders
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Fig. 12. Power spectrum and autocorrelation for the flow past the lattice of cylin-
ders

of each particle onto a square, “returning” from the plane to the torus. Some
particles “stick” for a long time near the obstacle border whereas the other
ones pass further from this border and move on much faster. Due to the irra-
tional inclination of the flow, each particle is subjected to repeated slowdowns
in the course of its evolution; as a result, after some time the particles get
spread over the whole surface of the square (Naturally, they do not cover the
whole surface of the square: recall the conservation of volume!). Qualitati-
vely, this picture resembles chaotic mixing: a time-periodic two-dimensional
flow can possess chaotic Lagrangian trajectories [20,21], and in this case the
mixing of an initial droplet of particles is very efficient. The mixing in our
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Fig. 13. Mixing in the flow past the lattice of cylinders

example, although producing ultimately the same result, is much slower and
less efficient than the mixing in turbulent or chaotic flows – which is not so
surprising in view of the full laminarity of stream lines.

5 Conclusion

In this article we have described some nontrivial examples of complex dy-
namical systems. Complexity in this context does not mean unpredictability
and closeness to randomness which characterize true chaos, but rather a non-
trivial interplay of dynamical properties allowing one to place such systems
between order and chaos. The most visible manifestations of this complexity
are the nontrivial spectral properties of the processes: the power spectrum is
neither discrete like for the ordered dynamics, nor absolutely continuous like
for the chaotic one, instead it is singular continuous, or fractal.

Remarkably, many approaches that are used in the studies of complex
dynamics stem from works of Kolmogorov and his school. Of principal im-
portance in the distinction between order and chaos is the concept of the
Kolmogorov complexity of symbolic sequences. As we have shown for the
Thue–Morse sequence, even simple symbolic sequences can have nontrivial
correlations. Another important concept, widely used by Kolmogorov and
his scholars (probably introduced first by J. von Neumann), concerns the
relation between continuous and discrete time dynamical systems. Mathe-
matically it is represented by the special flow construction. The main idea
here is that in the usual Poincaré map construction it is important to trace
information on the return times for the trajectories. Solely by changing the
properties of the return times, one can destroy correlations in the dynamics.
Finally, we have demonstrated that the nontrivial dynamics can be obser-
ved in simple two-dimensional noncompressible fluid flows of the type first
introduced by Kolmogorov. His original idea was to build the simplest model
mimicking transition to turbulence in flows. Rather surprisingly, already in a
laminar regime the particles in such a flow can be advected in a quite complex
manner.
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Abstract. The concept of entropy was initially introduced in thermodynamics
in a phenomenological context. Later, mainly by the contribution of Boltzmann,
a probabilistic interpretation of the entropy was developed in order to clarify its
deep relation with the microscopic structure underlying the macroscopic bodies.
In the unrelated field of communication systems, Shannon showed that, with a
suitable generalization of the entropy concept, one can establish a mathematically
self-consistent information theory. Kolmogorov realized, just after Shannon’s work,
the conceptual relevance of information theory and the importance of its ideas for
the characterization of irregular behaviors in dynamical systems. Going beyond a
probabilistic point of view, the Algorithmic Complexity (introduced by Chaitin,
Kolmogorov and Solomonoff) allows a formalization of the intuitive notion of ran-
domness of a sequence. In this chapter we discuss the connections among entropy,
chaos and algorithmic complexity; in addition we briefly discuss how these con-
cepts and methods can be successfully applied to other unrelated fields: linguistics,
bioinformatics, finance.

1 Entropy in Thermodynamics and Statistical Physics

The concept of entropy made its appearance in physics to describe in a ma-
thematical way the irreversible behaviors of the macroscopic bodies, those
we experience in everyday life. The goal is achieved by the 2nd principle of
the thermodynamics, which can be formulated as follows [16].

There exists a function, the entropy S, defined for the equilibrium states of
macroscopic systems, such that its difference between (equilibrium) states A
and B of a given system satisfies the relation:

∆SAB ≡ S(B) − S(A) ≥
∫ B

A

δQ

Tsource
, (1)
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where the integral is computed along an arbitrary transformation leading
from state A to state B, in which the system exchanges heat δQ with external
sources at thermodynamic temperatures Tsource. When the transformation is
chosen to be reversible, relation (1) has the equality sign and may be used
to compute ∆SAB . In reality, irreversibility transforms relation (1) to an
inequality which sets limits to what can happen. In particular, in isolated
systems, where δQ = 0, a transformation A → B is allowed only if S(B) >
S(A).

In the case of n moles of a classical, perfect and mono-atomic gas, con-
tained in a vessel of volume V at temperature T , one is able to write:

S(n,U, V ) = nR ln

[
γ0

(
U

n

)3/2(
V

n

)]
, (2)

where γ0 is a suitable constant, R is the universal gas constant and U =
3
2 nRT is the internal energy of the gas.

If we accept the atomistic point of view [5], we put R = NAk, where NA =
6.02 1023 is Avogadro’s number and k = 1.38 10−23J/K is the Boltzmann
constant, and we rewrite eq. (2), for N = nNA molecules, as

S(N,U, V ) = N k ln

[
γ1

(
U

N

)3/2(
V

N

)]
, (3)

where γ1 is another constant. In this formula, the specific volume, V/N , is
the mean volume available for the motion of a single molecule, where we
assume that molecules are indistinguishable. If we define V/N = (∆x)3, ∆x
may be thought of as the typical variability of the space coordinates for each
molecule. For the mean (kinetic) energy U/N one can write:

U

N
=

1
2m
(〈p2

x〉 + 〈p2
y〉 + 〈p2

z〉
)

=
3

2m
〈p2

x〉 ≡ 3
2m

(∆p)2 , (4)

where px, py, pz are the components of the momentum of one molecule, so
that∆p, the root mean-square of one component, gives the order of variability
of the single molecule momentum. Then, denoting by γ2 and γ two suitable
constants, we have:

S = N k ln
[
γ2 (∆x)3 (∆p)3

]
= k ln

[
(∆x) (∆p)

γ

]3N

. (5)

Here, [(∆x) (∆p) /γ]3N represents the volume, in units of (γ)3N , of the 6N -
dimensional phase space region where the motion of the system takes place.

Equation (5) is a special case of the relation between thermodynamic
entropy and the extention of the motion in the phase space, the “Boltzmann
principle”, that one can write as:

S = k lnΓ (N, U, V ) , (6)
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with

Γ (N, U, V ) =
∫

U−δU/2≤H≤U+δU/2

d3Nx d3Np

N ! h3N
≡

∫

U−δU/2≤H≤U+δU/2

dΓN .

(7)

In (7) H =
∑N

i=1 p2
i /2m is the Hamiltonian function (the energy) of the

system, U is its actual value, known within an uncertainty δU , h is a con-
stant that in classical mechanics is indeterminate but that, with the help of
quantum mechanics, may be taken to be the Planck’s constant. The term
N ! takes into account the indistinguishability of the molecules of the gas.
So Γ (N, U, V ) measures the amount of freedom the system has in its phase
space. This is the starting point for a statistical mechanics description of the
thermodynamics. According to the interpretative rules of statistical mecha-
nics,

dΓN

Γ (N, U, V )
(8)

is the probability to find the system, in equilibrium with energy around U ,
in a volume d3Nx d3Np of its phase space.

It is interesting to observe that eq. (8) defines 1/Γ (N, U, V ) as the (uni-
form) probability density of finding a system in equilibrium in anyone of its
allowed microscopic states, the micro-canonical distribution:

ρ(x1,x2,x3, . . . ,xN ,p1,p2,p3, . . . ,pN ) = 1/Γ (N, U, V ) , (9)

and we can write

S

k
= lnΓ =

∫
dΓN ρ (− ln ρ) ≡ 〈− ln ρ〉 . (10)

This is a possible and useful definition of the entropy in statistical mechanics,
even when the equilibrium states are described by a density ρ, not necessarily
the micro-canonical one (Gibbs entropy),

S = −k 〈ln ρ〉. (11)

2 Entropy in Information Theory

The concept of entropy enjoyed a renewed consideration in the scientific com-
munity when, at the end of 1940s, in a very different context, C.E. Shannon
[22] adressed the problem of an efficient transmission of messages, thus lay-
ing the foundations of a mathematical theory of communication. Among the
various results obtained by Shannon, the following is of interest for us.
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Each particular message to be transmitted is thought to belong to the
ensemble of all the messages one source can generate. The source is able
to emit M different symbols, constituting the so-called alphabet, and every
message is a sequence of N letters that we indicate with (s1, s2, s3, . . . , sN )
or sN , where each si is one of the M symbols. One supposes that every
message may be produced with a probability p(sN ). Usually the signal sent
through a transmission channel is a sequence of m (�= M) possible physical
states; we assume a binary channel, i.e. a channel operating with two states
that can be named 0 and 1. At this point one has the coding problem: one
needs to transform every M -ary sequence into a binary sequence, in the most
economical way, i.e. such that the average length of the coding sequences be
minimum (one also wants to recover the original message so the code must
be invertible). Shannon was able to show that it is possible to associate each
message sN with a sequence of �(sN ) binary symbols, i.e. of �(sN ) bits, where

�(sN ) ≈ log2
1

p(sN )
, (12)

thus obtaining a (quasi) optimal coding. So one has that log2 1/p(sN ) is a
measure of the resources needed to send a particular message. An interesting
result is obtained when considering long messages, the N → ∞ limit. In this
case one introduces the quantity, called Shannon entropy:

h = lim
N→∞

1
N

〈�〉N = lim
N→∞

1
N

∑

sN

p(sN ) log2
1

p(sN )
(13)

that represents the average number of bits needed to code a source sym-
bol. The importance of h is clarified hereafter. According to the Shannon-
McMillan theorem [12], for N → ∞ the ensemble of sequences sN divides up
into two sets:

– the set of sequences with p(sN ) ≈ 2−N h, that are said the typical se-
quences;

– the set containing all the other sequences.

The set of typical sequences, the ones that are “reasonably probable”, has
N (N) ≈ 2N h elements. Moreover the probability of this set is ≈ 1; while the
probability of the remaining set is ≈ 0. This means that the typical sequences
almost exhaust the total probability and constitute a set of N (N) practically
equiprobable elements, with p(sN ) � 1/N (N). The Shannon entropy gives, at
the same time, both the number of bits per symbol that are necessary to code
each one of these (long) sequences and the rate of growth of their number with
the sequence length. From this point of view, writing h = (1/N) log N (N)
and comparing Eqs. (13) and (11), one realizes that h is the analogue of
the entropy per particle in statistical mechanics: S/N = (1/N)k lnΓ , hence
the name. Therefore, for an efficient transmission of long messages, one must
be able to forward h bits per emitted source symbol. This is the same as
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identifying, with N · h bits, one among the N (N) substantially equiprobable
messages that one can reasonably expect [22].

The statistical mechanics entropy (Boltzmann entropy) S = k lnΓ and
the analog quantity in information theory hN = log2 N (N) may be seen as
two measures of the amount of uncertainty in the associated system: this un-
certainty grows as either Γ (the number of accessible microstates) or N (N),
(the number of messages that can potentially be transmitted) grows. From
this point of view, entropy may also be seen as a measure of the quantity of
information one obtains after the state of the system has been determined
or the message has been transmitted (and received). Given a probabilistic
scheme, assigning probabilities pi (i = 1, . . . ,M) to the M occurrences of an
event x, the expression:

M∑

i=1

pi log2
1
pi

= 〈− log2 p〉 (14)

defines the entropy or uncertainty of the event, that we indicate with H(x).
This quantity indeed can be thought of as the average uncertainty on the
event before it happens, or the average amount of information one gets from
a single actual realization. It satisfied 0 ≤ H ≤ log2M ; one has H = 0 if
all pi but one are zero, since in this case there is no uncertainty at all (and
no new information from observing the certain event). On the other hand
the maximum value both of uncertainty and of information, H = log2M , is
reached when all occurrences are equiprobable: pi = 1/M . In the case when
x is a symbol of a source of messages, x = s1,

H(x) =
∑

s1

p(s1) log2
1

p(s1)
≡ H1 (15)

is the average uncertainty on the emission of one symbol. It is possible to
show that the quantity

1
N

∑

sN

p(sN ) log2
1

p(sN )

may be read as the mean uncertainty on the emission of the N th symbol of a
sequence, given that the preceding N−1 are known. Therefore we may inter-
pret h as the mean residual uncertainty on the appearance of an additional
symbol in a sequence, after the information contained in the (infinitely long)
past history has been acquired. If time correlations exist in the sequences, so
that some constraint on the future is given by the past, the mean uncertainty
becomes lower. So, in general, we have h ≤ H1 ≤ log2M .

In the coding problem of information theory, one wants to find an (eco-
nomical) invertible relation between different sequences that represent the
original message and the transmitted one. If one thinks about the sequences
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as describing evolutions of dynamical systems (see next subsection), one easily
realizes that information theory concepts may play a role in problems of dy-
namical systems. For instance in the isomorphism problem, where one wants
to characterize the conditions under which one is sure that two formally dif-
ferent systems are actually the same. This implies that an invertible relation
exists which preserves the probabilistic and dynamical relations among their
respective elements. In facing this problem Kolmogorov defined a quantity
that is known as the Kolmogorov-Sinai entropy of a dynamical system [14,24].

The above results have been obtained by supposing that the message
source has well defined probabilistic rules, such that each message has a cer-
tain probability to appear. The effect of this probability distribution is to
generate a selection among all the MN a priori possible messages, reducing
them to the set of the typical sequences that are “reasonable” from a probabi-
listic point of view. In cases where a message is generated by unknown rules,
one can search for the most economical, i.e. the shortest, (binary) code to
transmit it. Thus one poses the problem of a “universal coding”, depending
only on “intrinsic” properties of the symbol sequence. To find the answer, Kol-
mogorov introduced the idea of Algorithmic Complexity (AC) (also known as
Kolmogorov complexity) [15,6,25].

3 Entropy in Dynamical Systems

Let us now discuss the relevance of information theory in the context of the
deterministic systems. The idea is due to A.N.Kolmogorov who, just after the
Shannon work, realized the conceptual importance of the information theory
beyond its practical use in communications [13,14].

For the sake of self-consistency, we introduce some basic elements on cha-
otic dynamical systems. A dynamical system is defined as a deterministic rule
for the time evolution of the state (described by a d-dimensional vector x).
Well-known examples are the ordinary differential equations:

dx
dt

= f(x(t)) (16)

and the discrete time maps:

x(n+ 1) = g(x(n)) , (17)

where x, f ,g ∈ Rd. Examples of regular behavior of the solutions of ordi-
nary differential equations are stable fixed points, periodic or quasi-periodic
motions.

After the seminal work of Poincaré, and later Lorenz, Hénon and Chirikov
(to cite only some of the most eminent ones) the existence of visibly irregular
non periodic behaviors, that are called chaotic, is now well established [20].
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Fig. 1. Lorenz’s model: Projection of a trajectory on the x z plane for r = 28,
σ = 10 and b = 8/3

In Fig. 1 one can see the time evolution of the celebrated Lorenz’s model [19]:





ẋ = −σ(x− y)

ẏ = −xy + rx− y

ż = xy − bz

(18)

where the dot means the time derivative.
For the purposes of this chapter, the most relevant feature of chaotic

dynamics is the so-called sensitive dependence on initial conditions. Consider
two trajectories, x(t) and x′(t), initially (say, at time t = 0) very close; in
chaotic systems we find that the distance between them, |δx(t)| = |x(t) −
x′(t)|, increases exponentially in time as |δx(0)| → 0 and t → ∞:

|δx(t)| ∼ |δx(0)|eλ1t , (19)

λ1 is called first (or maximal) Lyapunov exponent, see Fig. 2. The exponent
λ1 characterizes the typical trajectories of the system, just like the Shan-
non entropy characterizes the typical sequences of an ensemble of messages.
The sensitive dependence on the initial conditions (i.e. λ1 > 0) is a practical
definition of deterministic chaos, since it implies that, in presence of any un-
certainty of the knowledge on the initial state, the system is unpredictable
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Fig. 2. Lorenz’s model: |δx(t)| vs t for r = 28, σ = 10 and b = 8/3

for long times. If we know the initial conditions with a finite, but small, pre-
cision δ0 = |δx(0)| and we want to predict the state with a certain tolerance
δM then, from eq. (19), we find that our forecast cannot be pushed to times
larger than TP , called predictability time:

TP ∼ 1
λ1

ln
δM
δ0

. (20)

Because the logarithm varies in an extremely slow way, TP is essentially
determined by λ1.

A more complete characterization of the instability properties of the tra-
jectories of a chaotic system is given by the set of Lyapunov exponents
λ1, λ2, ....λd (where conventionally the labeling is such that λ1 ≥ λ2 ≥ .... ≥
λd) defined as follows. Consider a small d-dimensional ball of radius ε with
center x(0). Under the evolution (16) or (17), at time t the ball will be defor-
med into a d-dimensional ellipsoid with semi-axes l1(t) ≥ l2(t) ≥ ... ≥ ld(t).
The Lyapunov exponents are defined as

λi = lim
t→∞ lim

ε→0
ln
li(t)
ε

. (21)

An important consequence of the instability with respect to initial conditions
is that the time sequences generated by a chaotic system, from the point of
view of information theory, have the same properties of genuine stochastic
processes. This is another way to view unpredicatability. In order to discuss
this idea, let us consider the example of a one-dimensional map, eq. (17) with
d = 1, the celebrated logistic map at Ulam’s point:

x(t+ 1) = 4x(t)(1 − x(t)) . (22)
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It is possible to show that such a system, according to our definition, is chao-
tic since λ1 = ln 2 [20]. Consider a trajectory {x(0), x(1), ..., x(T−1)} and the
symbolic sequence {i0, i1, ..., iT−1} obtained by taking ik = 0 if x(k) ≤ 1/2,
otherwise ik = 1. Let us now study the Shannon entropy h of the ensemble
of sequences so generated and its relation with the maximal Lyapunov ex-
ponent λ1. Under rather general conditions, almost always satisfied by the
commonly investigated dynamical systems, h can be numerically estimated
by analyzing one very long (infinitely long, in principle) sequence as follows.
Denote with Wm a m-long subsequence {ij , ij+1, ..., ij+m−1}; from its fre-
quency of apparition in {i0, i1, ..., iT−1}, determine its probability P (Wm)
and finally compute 1

lim
m→∞

1
m

∑

Wm

P (Wm) ln
1

P (Wm)
= h .

Note that in dynamical systems theory, entropy is usually defined with the
natural logarithm, while in information theory the binary log is preferred. In
the above exemple (22), one obtains h > 0 and indeed, in this case, one can
exactly determine h = ln 2. This coincidence of values for λ1 and h is not
accidental. The results of Sect. 2 show that the number of bits NT necessary
to specify one of these sequences of length T is

NT � T
h

ln 2
. (23)

On the other hand, we know that in the presence of chaos, see Eq. (19),
|δx(t)| ∼ |δx(0)| exp(λ1t). Therefore, in order to be able to specify iT−1, one
needs |δx(0)| small enough such that |δx(T − 1)| ≤ 1/2. Namely |δx(0)| ≤
(1/2) exp(−λ1T ), which means that one has to use a number of bits NT �
ln(1/|δx(0)|)/ ln 2 � T λ1/ ln 2. From these considerations, comparing the
above result with Eq. (23), one can conclude that, in a one-dimensional map,
the maximal Lyapunov exponent has also an entropic meaning, i.e. it gives
(to within a factor ln 2) the number of bits per unit time necessary to specify
a trajectory.

Consider again the Lorenz model (which has a unique positive Lyapunov
exponent) shown in Fig. 1. The chaotic trajectory evolves turning around
two unstable fixed points, C1 and C2, with an average period 〈τ〉. Let us
introduce a binary sequence {i1, i2, . . . } as follows. For each turn around C1,
put i = 1, otherwise i = 0. If one computes the Shannon entropy h of such a
sequence, one finds the nice relation

h

〈τ〉 = λ1 , (24)

1 Strictly, the estimated probability P depends on T and one would have to let T
tend to infinity before letting m tend to infinity. in practise, T is given (finite)
and limm→∞ only means taking m large (but still small with respect to T to get
a good statistical estimate of P (Wm)).
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again providing a link between the Lyapunov exponent of chaotic trajectories
and the Shannon entropy of symbolic sequences generated by the system.

At first glance one might believe that the above procedure, in which one
associates a trajectory (given by real numbers) of a chaotic system to a
sequence of integer numbers, is too crude and some relevant features are
suppressed. An important result is that, in presence of (unavoidable) finite
precision, this reduction may be realized with no suppression of information,
in the case of deterministic systems. Previously we saw that, because of the
sensitive dependence on the initial conditions, the uncertainty on the initial
state implies the practical impossibility of a detailed description of the tra-
jectory, in chaotic systems. Therefore a coarse-grained description appears
rather natural.

For the sake of simplicity, we consider a discrete time system (i.e. a map).
To model finite precision measurements, we introduce an ε-partition of the
phase space with N disjoint sets (hypercubes of edge ε): A1, A2, ..., AN . From
any initial condition x(0), one has a trajectory {x(1),x(2), ...,x(T )}. This
trajectory identifies a symbolic sequence {i1, i1, ..., iT }, where ij (1 ≤ ij ≤ N )
means that x(j) is in the cell Aij

.
In such a way, for any given ε-partition, one can compute the Shannon en-

tropy h(ε), either following the approach discussed in Sect. 2, if one considers
the ensemble of the trajectories, or as described above, if one analyzes one
single trajectory. The meaning of h(ε) is clear: the average number of bits per
unit time necessary to specify the time evolution with a precision ε is nothing
but h(ε)/ ln 2. In the limit ε → 0, we have the so called Kolmogorov-Sinai
entropy:

hKS = lim
ε→0

h(ε) . (25)

For deterministic systems with finite dimensional phase space, hKS < ∞.
This quantity was introduced by Kolmogorov as a way to distinguish among
non isomorphic dynamical systems: hKS is isomorphism invariant, so two
systems with different hKS are surely non isomorphic. The hope was that
identity of the Kolmogorov-Sinai entropy would entail isomorphism. In gene-
ral, however, this is not the case.

Just as the Shannon entropy in information theory, the Kolmogorov-Sinai
entropy gives the information per unit time necessary to completely specify
one typical time evolution of the system. Moreover, as remarked at the end
of Sect. 2, it is also a measure of the unavoidable residual randomness in
the prediction of the deterministic chaotic evolution, due to the impossibility
of perfect measurements. From both points of view, one important result is
that a discrete time deterministic system with finite entropy, satisfying fairly
general properties, may be represented by (is equivalent to) a random process
with a finite number of states; the minimum number of required states, m,
depends on the Kolmogorov-Sinai entropy: exp(hKS) < m < 1 + exp(hKS)
(Krieger’s theorem).
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In the above discussion we used a partition with hyper-cubic cells of edge
ε, and then we took the limit ε → 0, so that the number of elements of
the partition went to ∞. It is possible to introduce hKS using more general
partitions with a finite number of elements and then to take the supremum
over all the partitions.

As suggested by the examples above, there is a close relation between the
Kolmogorov-Sinai entropy and the positive Lyapunov exponents [20], which,
in many interesting cases, can be written as

hKS =
∑

λi>0

λi . (26)

If one regards chaos as random behavior, this relation gives a definite and
clear meaning to the above definition that a system with λ1 > 0 is a chaotic
one.

4 Algorithmic Complexity

In Sect. 2 we saw how the Shannon entropy gives a (statistical) measure of
complexity by putting a limit on the possibility of compressing an ensemble of
sequences. In the Algorithmic Complexity theory (introduced independently
by G.Chaitin, A.N.Kolmogorov and R.J.Solomonoff) one goes further, i.e.
one treats a single sequence, avoiding to use an ensemble. One can address
the problem of compressing a given sequence. However, one soon realizes that
a big compression is associated with a “simple structure” (little information
is required to reproduce the sequence). On the other hand, a “complicated
structure” requires much information to be reproduced, resulting in little
compression. So, the posed problem inevitably meets with that of defining
the randomness of the sequence.

Consider 3 different sequences of 24 coins flips (0 for heads and 1 for tails):

1) 000000000000000000000000 ;
2) 010101010101010101010101 ;
3) 100001001010011000111010 .

The first and the second sequences appear regular and somehow atypical.
In contrast, the last one seems irregular and typical. On the other hand,
probability theory does not seem able to express the notion of randomness of
an individual sequence. In our case, each sequence has the same occurrence
probability, i.e. 2−24.

The notion of Algorithmic Complexity (or Kolmogorov complexity) is
a way to formalize the intuitive notion of randomness (and regularity) of
a sequence. Consider a binary digit sequence of length T generated by a
computer code on some machine M: one defines Algorithmic Complexity
KM(T ) of this sequence as the bit length of the shortest program able to
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generate the T -sequence and to stop afterwards. Kolmogorov was able to
show the existence of universal computers U such that

KU (T ) ≤ KM(T ) + cM (27)

where cM depends only on the computer M. At this point, in the limit
T → ∞, we can define the Algorithmic Complexity per symbol with respect
to a universal computer (we omit the U-label)

C = lim
T→∞

K(T )
T

. (28)

Let us note that as consequence of (27), C does not depend on the machine
and it is an intrinsic quantity.

Using the above definition, one easily understands that a T -sequence of
all 0 (as in the first series) or a periodic repetition of 01 (as in the second
series) can be obtained with a program whose size is O(lnT ) and therefore in
the limit T → ∞, the complexity is zero. On the other hand in an irregular
sequence one expects that K(T ) ∼ T and therefore C is positive and one calls
the sequence complex.

Unfortunately Algorithmic Complexity cannot be computed; this impos-
sibility is related to the Gödel incompleteness theorem [6]. Beyond this im-
possibility, the concept of Algorithmic Complexity has an important role to
clarify the vague notion of randomness.

We can wonder whether the sequences generated by a chaotic dynamics
are complex (in the sense of the Algorithmic Complexity) or not. In this res-
pect, there exists an important relation between the Shannon entropy and the
Algorithmic Complexity KWT

of the T -sequences WT of an ensemble [3,18]:

lim
T→∞

1
T

〈KWT
〉 = lim

T→∞
1
T

∑
KWT

P (WT ) =
h

ln 2
,

where P (WT ) is the occurrence probability of WT . Putting this together with
the results of the preceding section, we have that

chaotic systems produce algorithmically complex sequences.

Of course, one has that for periodic sequences C = 0, while for a series
of random variables C > 0.

At first glance the above sentence may appear questionable, as one could
(erroneously) argue as follows. Since chaos is present also in very simple
systems, whose temporal evolution can be obtained with numerical codes of
few instructions, a sequence of arbitrary length can be obtained with a finite
number of bits, i.e. those necessary to specify the evolution rules, therefore
the Algorithmic Complexity is zero. The missing point in the above naive
argument is the quantity of information necessary (i.e. how many bits NT )
to specify the initial condition in such a way the code produce a certain



Kolmogorov’s Legacy about Entropy, Chaos, and Complexity 97

T -sequence. Previously, we saw that in chaotic systems for a typical initial
condition one has NT /T � ∑+

i λi/ ln 2 (where
∑+

i λi = hKS is the sum
of the positive Lyapunov exponents). Therefore, the Algorithmic Complexity
per symbol in chaotic systems is positive and strictly related to the Lyapunov
exponents, therefore to the Kolmogorov-Sinai entropy.

Let us clarify the above points with the following simple example [9].
Consider the one-dimensional map (called Bernoulli shift):

x(t+ 1) = 2x(t) mod 1 ,

with Lyapunov exponent ln 2. Writing the initial condition in binary nota-
tion, x(0) =

∑∞
j=1 aj2−j , where the aj can be 1 or 0, one immediately sees

that the action of the Bernoulli shift is nothing but a shift of the binary
coordinates: x(1) =

∑∞
j=1 aj+12−j , x(2) =

∑∞
j=1 aj+22−j , and so on. There-

fore the Algorithmic Complexity of the sequence {i1, i2, ..., iT }, obtained by
taking ik = 0 if x(k) ≤ 1/2 otherwise ik = 1, is reduced to the study of the
sequence {a1, a2, ..., aT } related to the initial condition. Of course there are
initial conditions x(0) with zero complexity. On the other hand, a remarkable
result, due to Martin-Löf, shows that almost all (in the sense of the Lebes-
gue measure) binary sequences {a1, a2, ..., aT } have maximum complexity, i.e.
K � T , in agreement with the fact that λ1 = ln 2 [18].

The above results can be summarized with a sort of slogan condensating
the deep link between the unpredictability of chaotic systems (i.e. at least one
positive Lyapunov exponent) with the impossibility to compress the chaotic
trajectories beyond the limit given by the fact that the Kolmogorov-Sinai
entropy is positive+[3]:

Complex = Incompressible = Unpredictable.

5 Complexity and Information in Linguistics,
Genomics, and Finance

In this section we briefly describe some examples of disciplines for which the
concepts discussed so far could represent important tools of investigation.

Let us first study the sequences of characters representing texts written in
a given language. This is the most familiar example of sequences of characters
which bring and transmit information. It is interesting to see how the pre-
viously stated slogan linking complexity, compressibility and predictability
applies to language. Consider, without loss of generality, the English langu-
age as our case example. The entropy of the English language can be defined
as the minimum number of bits per character necessary to encode an ideally
infinite message written in English. In order to estimate this quantity one
should be able to subtract the unavoidable redundancy which always comes
along with any linguistic message. The redundancy can also be seen as the
number of constraints (for instance lexical or grammatical rules) imposed on
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the English text. For example the fact that a q must always be followed by a
u or the impossibility to have two subsequent h are dependencies that make
the English language more redundant. Rules of grammar, parts of speech,
and the fact that we cannot invent words all make English redundant as well.
Redundancy is actually benefical in order to make the message transmission
efficient in noisy conditions or when only part of a message comes across. For
example if one hears “Turn fo th lef!”, one can make a fairly good guess as
to what the speaker meant.

Redundancy makes language more predictable. Imagine watching a se-
quence of symbols emitted on a ticker-tape. The question one could ask is
how much information will be added by the next symbol si once one already
knows the sequence s1...si−1. How much information will be gained upon see-
ing si also fixes the amount of surprise we experience. An extreme surprise
will convey a large amount of information, while if one can reliably predict
the next symbol from context, there will be no surprise and the information
gain will be low. The entropy will be highest when you know least about the
next symbol, and lowest when you know most. Shannon, with an ingenious
experiment [23], showed that the entropy of the English text is something
between 0.6 and 1.3 bits per character [21]. He devised an experiment where
he was asking subjects to guess letters in a phrase one by one using only the
knowledge of the letters previously guessed. At each step, he recorded the
total number of guesses taken to reach the correct letter for that position.
Shannon looked at the sequence of numbers of guesses as an encoding of the
original sentence and used the entropy of the resulting random variable as an
estimate for the entropy of an English letter.

More generally, estimating the complexity of a generic symbol sequence is
a formidably difficult task which involves the identification and extraction of
non-trivial long-range correlations inside the sequences. Kolmogorov propo-
sed the following strategy [28]. Suppose that a subject knows the probability
pi that the next symbol in the sequence is the i-th character of the alpha-
bet, conditioned by the appearance of the previous characters. The subject
scans through the text and calculates the running averages of − log pk where
k indicates the actual character observed at each time. Kolmogorov argued
that, if the probabilities pi were correct, this average would converge to the
entropy of the sequence. This approach can be seen as a natural by-product
of another very interesting approach to estimate the complexity of a string
which was proposed by Kelly [11], shortly after Shannon’s seminal paper.
This approach is related to the concept of gambling and it deserves a short
discussion.

5.1 From Gambling to Entropy Estimate

Let us now discuss the deep relation existing between information theory and
the optimal strategy in building a portfolio. In particular, compare the growth
rate of wealth and the entropy rate of a generic sequence of characters, for
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instance one describing the market (i.e. of the prices evolving according pro-
babilistic rules). This apparently surprising result was originally introduced
by Kelly [11] who was looking for an interpretation of the information theory
outside the context of communication. Later, many authors reconsidered and
generalized this approach for the growth-optimal investment strategy.

In order to illustrate the basic idea, we consider the simplest case of a
discrete time price of a unique stock:

St+1 = utSt ,

where St is the price at time t and the gain factors ut are independent identi-
cally distributed random variables, which can assume m possible values. Let
us consider an investor, with wealth S0 at the initial time, who decides to
gamble on such a stock market many times. At each time t the agent invests
a fraction lt of the capital in stock, and the rest in risk-less security, i.e. a
bank account. For simplicity, we set the case of the risk-less rate to zero.
It is easy to realize that at time t, the wealth St is given by the following
multiplicative random process:

St+1 = (1 − lt)St + utltSt = [1 + (ut − 1)lt]St .

The problem is to find the optimal strategy, i.e. the optimal values of l1, l2, ...,
which maximize the capital at the final time T .

In the financial literature, the standard way to face the problem is to
introduce the so-called utility function U(ST ), where U is a monotonic convex
function that depends on the preferences of the investor, and to maximize
the average of U(ST ) [8]. If T is large, using the large numbers law, one has
that the exponential growth of ST is constant with probability one. That is:

λ = lim
T→∞

1
T

ln
ST

S0
= 〈ln[1 + (u− 1)l]〉 =

m∑

i=1

ln[1 + (ui − 1)l]pi ,

where pi is the probability to have u = ui. The optimal strategy is specified
by the value l∗ which maximizes λ(l). Kelly’s strategy corresponds, in terms
of the utility function approach, to use U(ST ) = ln(ST ).

From the maximization procedure, one obtains a new set of probabilities:

qi =
pi

1 + (ui − 1)l∗

and

λ(l∗) =
m∑

i=1

pi ln
pi

qi
.

The quantity I =
∑m

i=1 pi ln pi/qi is the relative entropy (or Kullback-Leibler
divergence), which is a measure of the statistical distance between two dis-
tributions {pi} and {qi} (we shall come back to the definition of relative
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entropy in the coming sections). In the “symmetric” case, i.e. m = 2 and
u1 − 1 = 1 − u2 one has the very transparent formula

λ(l∗) = ln 2 − h

where h = −∑i pi ln pi is the Shannon entropy of the random process de-
scribing the stock market.

The above results show the connection between the information available
from the past data and the growth rate of wealth in an optimal strategy:
in the case of a process with the maximal entropy, i.e. h = ln 2 the growth
rate is zero. The simple case treated by Kelly can be generalized to more
realistic cases with many stocks and time dependent stochastic processes,
e.g. Markovian process. However, the connection between the growth rate
of wealth and the rate entropy of the market is still valid (see [8] Chaps. 6
and 15).

The concept of gambling has also been applied in a linguistic context.
Cover and King [7] have proposed a strategy for estimating the entropy of
English language which extends Shannon’s technique of guessing the next
symbol. In particular, they devised a gambling strategy where the gambler
bets on the outcome of the next symbol.

By generalising Kelly’s strategy, they imagine a gambler with an initial
capital S0 = 1. At the generic time step k+1, i.e. after k characters x1, ..., xk

of the string are known, the gambler bets the whole capital over the d possible
symbols (d = 27 in [7]). On every symbol, he puts a fraction of his capital,
given by the probability of occurrence of this symbol conditioned to the
knowledge of the k previous symbols:

q(xk+1|xk, ..., x1), (29)

with the condition
∑

xk+1
q(xk+1|xk, ..., x1) = 1. This scheme is called pro-

portional gambling because the whole capital is bet proportionally to the
probabilities of occurrence of the possible symbols, conditioned to the know-
ledge of the past symbols. For each bet, the maximum possible gain is equal
to d, i.e. to the cardinality of the alphabet. The capital changes recursively
according to the expression:

Sk+1(x1, ..., xk+1) = dq(xk+1|xk, ..., x1)Sk(x1, ..., xk), (30)

where k = 1, 2, .... It can be shown [7] that for any sequential gambling scheme
q(xk+1|xk, ..., x1), one has

(k − E logd Sk(x1, ..., xk)) log2 d ≥ K(x1, ..., xk), (31)

where E logd Sk(x1, ..., xk) indicates the expectation value of logd Sk

(x1, ..., xk) along the sequential scheme q(xk+1|xk, ..., x1) and K(x1, ..., xk)
is the algorithmic complexity of the string x1, ..., xk. The equality holds if
and only if q(xk+1|xk, ..., x1) = p(xk+1|xk, ..., x1), p(xk+1|xk, ..., x1) being
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the true conditional probability of the process. This result (which generalizes
Kelly’s [11]) states that an optimal gambling scheme allows for an estimate
of the Algorithmic Complexity of a finite string. In the limit of an infinite se-
quence emitted by an ergodic source, this optimal scheme would allow for an
optimal estimation of the Shannon entropy of the source. Using this scheme,
implemented on humans, Cover and King estimated the entropy of English
to a value on the order of 1.3 bits/symbol, in agreement with the earlier
estimates by Shannon, also based on humans.

As a by-product of the previous result, it turns out that one can use the
gambling scheme as a compressor for finite strings. In particular, using an
alphabet of d symbols, it is possible to construct a deterministic compression
scheme that allows for saving log2 Sn bits in the coding of a sequence of n
symbols. This results in a length of the compressed sequence equal to (1 −
1/n logd Sn) log2 d which, in the limit of optimal gambling scheme, converges
to the Algorithmic Complexity of the string. The deterministic compression
scheme uses a gambler and an identical twin to the gambler who shares the
same thoughts processes of the gambler. The gambler and the twin play the
role of encoder and decoder respectively. We refer to [7], which contains an
extensive bibliography, for the details of the compression scheme.

5.2 Looking for Relevant Information

One of the most challenging issues is represented by the huge amount of data
available nowadays. While this abundance of information and the extreme
accessibility to it represents an important cultural advance, one is also faced
with the problem of retrieving relevant information. Imagine entering the
largest library in the worlds, in search of all the relevant documents on your
favorite topic. Without the help of an efficient librarian, this would be a
difficult, perhaps hopeless, task [4]. The desired references would likely remain
buried under tons of irrelevant volumes. Clearly, the need for effective tools for
information retrieval and analysis is becoming more urgent as the databases
continue to grow.

To accomplish such an ambitious task, we must determine what is useful
or relevant information and where and how it is coded–say, in a written
document. This is a non-trivial problem since “information” means different
things in different contexts [1,30]. That is, information has no absolute value,
but depends on some specific “filters” each observer imposes on his data.
Consider a simple coin-toss experiment: The gambler will likely be interested
only in the outcome (heads/tails) of the toss. The physicist on the other
hand, might be interested in whether the outcomes reveal anything on the
nature of the coin—such as whether it is honest or dishonest.

Information extraction takes place via a two-step process. First comes
the so-called syntactic step, where one identifies the structures present in the
messages without associating any specific meaning to them. It is only in the
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second (or semantic) step that comprehension of meaning takes place, by
connecting the syntactic information to previous experience and knowledge.

As an example of this two-step process, consider how we might identify
the language in which a given text is written. In the first step we scan through
the text and identify the syntactic structures: articles, verbs, adjectives, etc.
But only one who “knows” the language can carry out the second phase,
where the incoherent jumble of syntactic data is summarized in the specific
meaning of the sentences. Other examples of this two-step process are how we
recognize the subject of a given text, its historical background, and possibly
its author.

The very same problem of retrieving relevant information turns out to be
crucial for another field that has experienced impressive growth in the last
few years: the bioinformatics.

Bioinformatics represents an emblematic example of a situation where too
much information comes into play. Since it is impossible to learn everything
about all living organisms, biologists solve the dilemma by focusing on some
model organisms and trying to find out as much as they can about them. On
the other hand, all available evidence indicates that the complete information
necessary for making organisms is encoded in the genome, i.e. in one or several
DNA molecules composed by strings of nucleotides. Having a DNA sequence
is like having a text written in an unknown language, coded with an alphabet
of four letters (A,C,G,T). The big challenge in this field is that the typical
sizes of the few genomes completely sequenced up to now range from 106 to
1011 bases, numbers which pose two main problems: how and where to store
all these data and, more importantly, how to extract relevant information
from them.

When analyzing a string of characters, for instance a text, a DNA or a
protein sequence, the main question is to extract the information it contains.
This is known as sequence analysis or information retrieval. At present, most
of bioinformatics and of the activities in the area of the so-called computa-
tional linguistics is concerned with sequence analysis.

Here are some of the questions studied in computational linguistics: auto-
matic recognition of the language in which a given text is written, authorship
attribution, automatic indexing and classification of large corpora of docu-
ments, retrieval of specific documents according to their content, reconstruc-
tion of phylogenetic trees for languages, etc..

On the other hand, current trends in bioinformatics include: (i) gene fin-
ding. One of the most important steps in the analysis of a new DNA sequence
is finding out whether or not it contains any genes, and if so, determining
exactly where they are. This process is also called segmentation; several al-
gorithms have been devised for this problem and implemented as systems
that are widely used today. (ii) gene function prediction. Suppose you have
identified a gene. What is its role in the biochemistry of its organism? Se-
quence databases can help us in formulating reasonable hypotheses based for
instance on homology considerations. (iii) protein 3D structure prediction.
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The structure of the protein is directly related to the protein’s functiona-
lity, probably even determining it. Moreover, 3D structure is more highly
conserved than the primary structure (the sequence). (iv) reconstruction of
phylogenetic trees. A phylogenetic tree gives a graphical representation of the
evolution of contemporary species from their possible common ancestor. Ty-
pically this can be done by defining and measuring some sort of evolutionary
distance and giving an estimate of the time needed for this divergence to
occur.

5.3 Relative Entropy and Remoteness of Sequences

One of the most important tools in sequence analysis is the definition of sui-
table measures of remoteness between pairs of sequences which could be used
for information retrieval. This can be done in general by looking for regula-
rities in the sequences. The question is then how to detect such similarities?
The example from bioinformatics is again enlightening. In this case a mea-
sure of similarities is obtained by means of an alignment procedure: roughly
speaking, different sequences are made to coincide as much as they can by
inserting gaps (corresponding to insertions or deletions with respect to the
possible common ancestor sequence) and paying a corresponding price. The
price to pay to align two sequences is proportional to their remoteness.

Another possible way to define the concept of remoteness between two
sequences of characters (used in Linguistics or Bioinformatics) comes from
the definition of Kolmogorov complexity. This concept is particularly useful
for information retrieval purposes since, as mentioned above, Kolmogorov
complexity is a property of a single sequence and does not refer to the exi-
stence of a source of messages. Using Algorithmic Complexity one can hope
to be able to extract information from individual sequences instead of refer-
ring to the sources which are typically not known (think of a text or a DNA
sequence).

In this framework an important concept to recall is that of relative en-
tropy or Kullback-Leibler divergence [8] which is a measure of the statistical
remoteness between two distributions. Its essence can be easily grasped with
the following example. Let us consider two ergodic sources A and B emitting
sequences of independent 0 and 1: A emits a 0 with probability pA and 1 with
probability 1−pA, while B emits 0 with probability pB and 1 with probability
1−pB . As already described, the compression algorithm applied to a sequence
emitted by A will be able to encode the sequence almost optimally, i.e. with an
average number of bits per character equal to −pA ln pA −(1−pA) ln(1−pA).
This optimal coding will not be the optimal one for the sequence emitted by
B. In particular, the entropy per character of the sequence emitted by B in
the coding optimal for A will be the cross entropy per character:

h(B‖A) = −pB ln pA − (1 − pB) ln(1 − pA). (32)
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Similarly, the entropy per character of the sequence emitted by B in its op-
timal coding is −pB ln pB − (1 − pB) ln(1 − pB). The number of bits per
character wasted to encode the sequence emitted by B with the coding opti-
mal for A is the relative entropy per character of A and B:

d(B||A) = −pB ln
pA

pB
− (1 − pB) ln

1 − pA

1 − pB
. (33)

A linguistic example will help clarify the situation: transmitting an Italian
text with a Morse code optimized for English will result in the need for trans-
mitting more bits than another coding optimized for Italian: the difference is
a measure of the relative entropy.

The concept of relative entropy is crucial in the so-called language mo-
deling. We have already discussed the problem of defining the entropy of a
language. In the simplest approximation, one can define a language with a
probability distribution p(x) where x indicates a generic sequence of charac-
ters (a word). Since the distribution p(x) is typically unknown, one should
construct a suitable modeling by making a guess q(x) about what the actual
distribution could look like. Now the question is how good an estimate of
p(x) is q(x). An answer to this question can be given in terms of the relative
entropy. The relative entropy between the q(x) distribution and the actual
distribution p(x) decreases as the language modeling improves.

More generally, relative entropy can be considered as a measure of the
remoteness between two individual sequences; it represents an important tool
for classification and information retrieval purposes. Suppose one wants to
estimate the “distance” (or similarity) between texts A and B in terms of
their information content. For instance, for two texts written in different
languages (e.g. English and Italian), their “distance” is a measure of the
difficulty experienced by a typical speaker of tongue A in understanding the
text written in language B. The remoteness of one text from the other can
be measured by estimating the relative entropy. We should remark that the
relative entropy is not a distance (metric) in the mathematical sense: it is
neither symmetric, nor does it satisfy the triangle inequality. As we shall
see below, in many applications such as phylogenesis, it is vital to define
a true metric that measures the actual distance between sequences. In this
perspective a very important contribution has been made by the group of
Li [17] where a rigorous definition of distance between unaligned sequences
was proposed, by using the information theoretical concepts of Kolmogorov
complexity [18].

5.4 Data Compression and Measures of Complexity

One last important point is how to obtain approximate measurements of
quantities such as the Kolmogorov complexity or the relative entropy. We
have already noted the impossibility of computing the Kolmogorov comple-
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xity related to Turing’s theorem on the halting problem and to Gödel’s theo-
rem [18].

Despite the impossibility to compute the Algorithmic Complexity of a
sequence, one has to recall that there are algorithms explicitly conceived to
provide a good approximation [18]. Since the Algorithmic Complexity of a
string fixes the minimum number of bits one need to reproduce it (optimal
coding), it is intuitive that a typical compression software (zipper), besides
trying to reduce the space occupied on a memory storage device, can be
considered as an entropy meter. The better the compression algorithm, the
closer the length of the zipped file to the optimal coding limit and the better
the estimate of the Algorithmic Complexity provided by the zipper. It should
be remarked that the zippers can provide a reliable approximation (always an
upper bound) to the Algorithmic Complexity of a typical string produced by
a stationary stochastic process with finite memory (finite correlation length).
By compressing the sequence of digits of π a compressor would never realize
that there is a simple rule to generate it.

We have already discussed how gambling techniques can be used for com-
pression purposes. Now we focus on specific zipping algorithms. A great im-
provement in this field is represented by the so-called Lempel and Ziv 77
algorithm [29]. This algorithm zips a file by exploiting the existence of re-
peated sub-sequences of characters in it. Its compression efficiency becomes
optimal as the length of the file goes to infinity. This algorithm has been
extensively studied and many variants and applications have been drawn
from it.

In the field of the so-called computational linguistics, there have been
several contributions showing how data compression techniques [27] can be
useful in solving different problems: language recognition, authorship reco-
gnition or attribution, language classification, classification of large corpora
by subject, etc. A detailed description of the state of the art is outside our
present scope and we refer the reader to the specialized literature. Just to
give an example, we quote one recent work [2] where data compression tech-
niques were used to define a suitable measure of distance between two se-
quences, to be used for authorship attribution and language phylogenesis
(see Fig. 3).

Of course the possibilities of data-compression-based methods go beyond
computational linguistics. Another important example is that of genetic pro-
blems. Here also there have been important contributions and we refer to
[17,10] for a recent overview.

It is evident how the specific features of data compression techniques in
measuring entropic quantities make them potentially very important also for
fields where human intuition can fail: DNA and protein sequences, as already
mentioned, but also geological time series, stock market data or medical mo-
nitoring.
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Albanian [Albany]
Romani Balkan [East Europe]
Maltese [Malta]

Romanian [Romania]
Romani Vlach [Macedonia]

Corsican [France]
Sammarinese [Italy]
Friulian [Italy]
Italian [Italy]
Rhaeto Romance [Switzerland]

French [France]
Sardinian [Italy]
Galician [Spain]
Spanish [Spain]
Asturian [Spain]
Portuguese [Portugal]

Wallon [Belique]
Occitan Auvergnat [France]

Occitan [France]
Catalan [Spain]
English [UK]
Latvian [Latvia]
Sorbian [Germany]
Serbian [Serbia]
Croatian [Croatia]
Bosnian [Bosnia]
Slovenian [Slovenia]
Slovak [Slovakia]
Polish [Poland]
Utzbek [Utzbekistan]
Turkish [Turkey]

Irish  Gaelic [Ireland]
Scottish Gaelic [UK]

Welsh [UK]
Hungarian [Hungary]

Finnish [Finland]
Lappish [Norway]

Estonian [Estonia]
Icelandic [Iceland]
Faroese [Denmark]
Swedish [Sweden]
Norwegian Nynorsk [Norway]
Norwegian Bokmal [Norway]
Danish [Denmark]
Afrikaans
Dutch [Netherlands]
Frisian [Netherlands]
Luxembourgish [Luxembourg]
German [Germany]
Breton [france]
Basque [Spain]

GERMANIC

UGROFINNIC  

CELTIC
ALTAIC

SLAVIC

ROMANCE

Fig. 3. This figure illustrates the phylogenetic-like tree constructed on the basis
of more than 50 different versions of the “The Universal Declaration of Human
Rights”. The tree is obtained using the Fitch-Margoliash method applied to a sym-
metrical distance matrix whose elements are computed in terms of the relative
entropy between pairs of texts. The tree features essentially all the main lingui-
stic groups of the Euro-Asian continent (Romance, Celtic, Germanic, Ugro-Finnic,
Slavic, Baltic, Altaic), as well as few isolated languages such as Maltese, typically
considered an Afro-Asian language, and Basque, classified as a non-Indo-European
language and whose origins and relationships with other languages are uncertain.
The tree is unrooted, i.e. it does not require any hypothesis about common ance-
stors for the languages. What is important is the relative positions between pairs
of languages. The branch lengths do not correspond to the actual distances in the
distance matrix. It is important to stress how this tree is not intended to reproduce
the current trends in the reconstruction of genetic relations among languages. It is
clearly biased by the use of modern texts for its construction. In the reconstruction
of genetic relationships among languages, one is typically faced with the problem
of distinguishing vertical (i.e. the passage of information from parent languages
to child languages) from horizontal transmission (i.e. which includes all the other
pathways in which two languages interact). Horizontal borrowings should be expun-
ged if one is interested in reconstructing the actual genetic relationships between
languages
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Abstract. We discuss the properties of the Algorithmic Complexity, presenting its
most relevant properties. The related concept of logical depth is also introduced.
These properties will be used to study the problem of learning from example, paying
special attention to machine learning. We introduce the propensity of a machine to
learn a rule and we use it to define the intelligence of a machine.

1 Algorithmic Complexity

We have already seen in earlier in Part II that Kolmogorov, independently
and more or less simultaneously with other people, introduced the concept of
algorithmic complexity of a string of characters (or, if we prefer, of an integer
number) as the length in bits of the shortest message that is needed to identify
such a number. This idea seems similar to Shannon’s entropy, but it is deeply
different. Shannon’s entropy is the shortest length of the message needed
to transmit a generic (in the sense of measure theory) string of characters
belonging to a given ensemble, for example a sentence of given length in
Italian. More precisely, given a probability distribution of an ensemble of
strings, Shannon’s entropy controls the average length of a message obtained
by compressing in an optimal way a string extracted with this probability
distribution, in the limit where the length of the string goes to infinity. In
contrast, Kolmogorov’s complexity is the shortest message length needed to
transmit a given string of characters: e.g. we want to know the length of the
message needed to transmit the Divina Commedia, not to transmit a generic
Italian poem of the same length written in Dante’s style.

In a slightly different setting, that is nowadays more familiar to most of
us, we can define the Kolmogorov complexity Σ(N) of a number N as the
length of the shortest computer program that computes such a number (or
if we prefer, prints that number). This definition of complexity depends on
the computer language in which the program is written, so that we should
indicate in the definition of Σ(N) the language we are using. However, if
we are interested to large values of complexity, the choice of the language is
irrelevant and it contributes in the worst case to an additive constant. Indeed,
it is evident that

ΣPascal(N) < ΣPascal(Fortran compiler written in Pascal) +ΣFortran(N)
(1)

G. Parisi, Complexity and Intelligence, Lect. Notes Phys. 636, 109–121 (2003)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2003
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Indeed if we know how to compute something in Fortran and we would like to
compute it in Pascal, we can just write a Fortran compiler in Pascal and use
it to execute the Fortran code. In the nutshell, we can transmit the Fortran
compiler written in Pascal and the program that computes the message in
Fortran. Inverting the argument we get

|ΣFortran(N) −ΣPascal(N)| < const, (2)

where constant does not depend on N . So for very complex messages the
choice of the language is not important.

This is common experience also in human languages. If we have a short
discussion on the possible evolution of the snow conditions during the co-
ming days, in relation to a trip on a dog-trained sled, it is extremely likely
that the conversation should be much shorter is some languages and much
longer in others. On the other hand, if we have to explain to somebody the
proof of the last Fermat theorem starting from scratch (i.e. from elementary
arithmetics), it would take years and in the process we can introduce (or
invent) the appropriate mathematical language, so that the dependence on
the natural language we use is rather weak. In other words, for messages of
small complexity we can profit from the amount of information contained in
the language, but this help becomes irrelevant in the case of very complex
messages.

It should be clear that in the case of a generic number N of K binary
digits, i.e. smaller than 2K , elementary arguments (and also Shannon’s theo-
rem) tell us that the complexity is K. The complexity cannot be larger than
K because we can always write a program that is of length K plus a small
constant:

write 3178216741756235135123939018297137213617617991101654611661.

The length of this program is the same as the length of the output of the
program (apart for the characters lost in writing “write”); it is rather unlikely
(I will pay 1000 Euros for a counterexample) that there is a much shorter
one1. Of course the program

write 11**57

is much shorter than

write 228761562390246506066453264733492693192365450838991802120171,

although they have the same output.

1 I beg the reader to forget the inefficiency of writing decimal numbers in ASCII.
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Let us consider an other example. The program

A=2**31-1
B=5**7
I=1
for K=1 to A-1

I=mod(I*B,A)
endfor

generates a sequence of pseudo random numbers that is rather long (about
8 Gbytes); apart form small variations, it is extremely likely that it is the
shortest program that generates this sequence. Of course it is much shorter
than the program (of length 8 Gbytes) that explicitly contains the sequence.

2 Some Properties of Complexity
and Some Apparent Paradoxes

Although most of the numbers of K bits have complexity K, we have seen
that there are notable exceptions. It should be clear that to identify these
exceptions and to evaluate their complexity is not a simple task. A number
may have a low complexity because it is a power, because it is obtained as
the iteration of a simple formula, or just because it coincides with the second
million digits of π. A systematic search of these exceptions is not easy.

However one could imagine a simple strategy. We can consider all the
programs of length K. Each program will stop and write a string (maybe
empty) or it will never stop: A program that never stops is

I=1
do forever

I=I+1
if(I<0) then

write I
stop

endif
enddo

where I is an arbitrary length number.
In this case, it is trivial to show that the program never stops. In other

cases it is much more difficult to decide if the program stops. Let us consider
the following example:
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I=1
do forever

I=I+1
consider all positive integers a,b,c and n, less than

I with n>2.
if(a**n+b**n=c**n) then

write a,b,c,n
stop

endif
enddo

This program stops if and only if Fermat’s last theorem is false and we
know now that it will never stop. Up to a few years ago, it was possible that
it might stop, while writing a gigantic number. A program that stops only if
the Goldbach conjecture2 is false quite likely will never stop, though we do
not know for sure.

There cannot be any computer program that can compute if a computer
program stops or not. Otherwise we would have a contradiction. A compu-
ter program that can find those that stop, would be able to identify those
program that are the shortest one and produce the same output: for a given
length we can sort them in lexicographic order. If this happens, for example
we could identify the first program of length K of this list. The output of
this program has complexity K, in the same way as all the programs of this
list, however we would identify the first program of the list transmitting only
the number K; this can be done using only ln2(K) bits and therefore the
complexity of the output would be ln2(K), i.e. a number much smaller than
K and this is a contradiction.

One could try to find a loophole in the argument. Although it is impossible
to decide if a program does not stop, because we would need to run it for
an infinite amount of time, we can decide if a program stops in M steps. As
long as there is a finite number of programs of length K, for each value of K
we can define a function f(K) that is equal to the largest value of steps at
which a program of length K stops. All programs of length K that do not
stop in f(K) must run forever. The previous construction could be done by
checking the output of all the programs of length K that stop in less than
f(K) steps. Therefore if we could compute the function f(K) or an upper
bound to it, we would be able to get the list of all the programs that stop.

A simple analysis shows that no contradiction is present if the function
f(K) increases faster than any function that is computable with a program

2 The Goldbach conjecture states that any even integer n can be written as the sum
of two prime numbers: the equation p1 +p2 = n always has a solution with prime
p1 and p2. The conjecture is evidently true: empirically the number of solutions
increases, apart logarithmic corrections, linearly with n with fluctuations of order
of n1/2 with respect to the expected linear behaviour. No proofs are known.
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of constant length: e.g. we must have that for large K that

f(K) > eeeeeeeeeeeeK

. (3)

The complexity of finding an upper bound to f(K) must be O(K).
The existence of a function that grows faster than what can be computed

by a program of fixed length seems surprising although it is rather natural.
Call M(K) the maximum finite number3 that can be printed by a program
of length K. Now it is evident that M(K + 1) > M(K), therefore the fun-
ction M(K) cannot be printed by any program with length less that K, so
that there is no finite length program that is able to print all the values of
M(K). The conclusion is that to find the shortest program (or if we prefer
the shorted description) of a number N is something that cannot be done
by a program: the complexity is a well defined quantity, but it cannot be
computed systematically by a program.

Many variations on the same theme can be made: suppose that we add to
our computer an oracle: a specialized hardware that tells the value of f(K))
(or directly the complexity of a string). We could now define a complexity
Σ1(N) for the system computer +oracle. The same arguments as before tell
us that the new complexity Σ1(N) cannot be computed for any N by the
the system computer +oracle. We could introduce a superoracle and so on.
The fact that we are unable, also with the use of any kind of oracles, to find
a systems that can compute the computational complexity relative to itself
recalls intuitively the Gödel theorem: This is not surprising since there are
deep relations between these arguments and Gödel’s theorem, that have been
investigated by Chaitin and presented also in many popular papers.

3 The Logical Depth

The problem of finding the minimal complexity of a number (or of a sequence
of numbers) intuitively corresponds to finding the rule by which the number
has been generated. This problem is used in intelligence tests. For example
one may be asked to find out the rules that generate the following sequences,
or equivalently to predict the next numbers of the sequences

1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 4 8 16 32 64 128 256 512 1024 2048
1 1 2 3 5 8 13 21 34 55 89 144
1 1 2 2 4 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4

For the first two lines the rule is clear. The third line is a Fibonacci sequence:
the next number is the sum of the of the two previous one. The last line
3 It is trivial to write down a program that never stops and go on by writing an

infinite number. Here we need a program that writes a number and then stops.
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follows a slightly more complex rule and we leave to the reader the pleasure
of finding it.

In the case of different rules, we consider a natural rule the simplest one:
for example we could say that the first line is the sequence of natural integer
that cannot be written as a2 + b2 + c2 + d2 with a, b c and d all different (the
first missing integer would be 30). However this second rule is much longer
and it is unnatural. The two rules would produce rather different sequences
but if we know only the first elements, the first choice is much more natural.

A related and somewhat complementary concept is the logical depth of
a number [10]: roughly speaking it is the amount of CPU time needed to
compute it if we use the shortest program that generates it (i.e. the natural
definition of the number).

It is evident that if the complexity is given by the upper bound and the
program consists of only one write instruction, the execution is very fast, i.e.
linear in the number of bits. On the other hand, if a very short program prints
a very long sequence, the execution may be still very fast, as in the case of a
typical random number generator, or may be very slow, e.g. the computation
of the first 106 digits of π, or to find the solution of a difficult problem whose
instance has been generated using a simple formula. A possible example of
this last category is to find the N variables σ(i) = ±1 that minimize

∑

i=1,N



σ(i) − 1√
N

∑

k=1,N

sin
(

2πik
N

)
σ(k)




2

. (4)

Although it is not excluded that such a problem has an analytic solution
[4], it is quite likely that the shortest program is the trivial one (corresponding
to the very definition of the problem): we examine all the 2N configurations
and we determine the minimum.

A careful analysis tells us that only a low complexity sequence may have
a large logical depth; moreover the same arguments of the previous section
tell us that there must be sequences with extremely large values of the logical
depth for any value of the complexity K (i.e. logical depth of order f(K)).

These results concern us also because science aims to find out the simplest
formulation of a law that reproduces the empirical data. The problem of
finding the simplest description of a complicated set of data corresponds to
finding the scientific laws of the world. For example both the Newton and
Maxwell laws summarize an enormous quantity of empirical data and are
likely the shortest descriptions of these data.The ability to find the shortest
description is something that cannot be done in general by a computer; it is
often taken a sign of intelligence.

Phenomenological explanations with a lot of parameters and not so deep
theory are often easy to apply and correspond to rules that have high com-
plexity and low logical depth while simple explanations with few parameters
and a lot of computation needed have low complexity and rather high logical
depths.
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For example the computation of chemical properties using the valence
theory and the table of electronegativity of the various elements belongs to
the first class, while a first principle computation, starting from basic for-
mulae, i.e. quantum mechanics belongs to the second class. A good scientific
explanation is a low complexity theory (i.e. the minimal description of the
data) that unfortunately may have an extremely large logical depth. Some-
times this leads to the use of approximated theories with higher complexity
and smaller logical depth.

4 Learning from Examples

Scientific learning is just one instance of a general phenomenon: we are able
to learn from example and to classify the multitude of external objects into
different classes. The problem of how it is possible to learn from example has
fascinated thinkers for a long time. In a nutshell the difficulty is the following:
if the rule cannot be logically derived from the examples4 how can we find
it? The solution put forward by Plato was that the rule is already contained
in the human brain and the examples have the only effect of selecting the
good rule among all the admissible ones.

The opposite point of view (Aristotle) claims that the problem is ill posed
and that the human brain is a tabula rasa before the experience of the external
world.

Plato’s point of view has often been dismissed as idealistic and non-
scientific. Here we want to suggest that this is not the case and that Platonic
ideas are correct, at least in a slightly different context. Indeed the possibi-
lity of having machines which learn rules from examples has been the subject
of intensive investigations in recent years [5]. A very interesting question is
to understand under what conditions the machine is able to generalize from
examples, i.e. to learn the whole rule knowing only a few applications of the
rule. The main conclusion we reach is that a given machine cannot learn an
arbitrary rule; the set of rules that can easily be learned may be determined
by analyzing the architecture of the machine. Learning by example consists
of selecting the correct rule among those contained in this set. Let us see
in the next sections how it may happen and how complexity is related to
intelligence.

5 Learning, Generalization, and Propensities

In order to see how this selectionist principle may work, let us start with
some definitions. In the following I will consider rules which assign to each
4 Two examples: (a) the horsiness is not the property of any given horse or set of

horses (b) there are many different mathematical rules that generate the same
sequence.
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input vector of N Boolean variables (σi = 0 or 1 for i = 1, N) an output
which consists of a single Boolean value. In other words a rule is a Boolean
valued function defined on a set of 2N elements (i.e. the set of all the possible
values of the variables σ); it will be denoted by R[σ].

The rule may be specified either by some analytic formulae or by explicitly
stating the output for all the possible inputs. The number of different rules
increases very rapidly with N : it is given by 22N ≡ 2NI , where NI is the
number of different possible input vectors, i.e. 2N . In the following we will
always consider N to be a large number: terms proportional to 1/N will be
neglected.

A learning machine is fully specified if we know its architecture and the
learning algorithm.

Le us first define the architecture of the machine. We suppose that the
computations that the machine performs depend on M Boolean variables
(Jk, k = 1,M). In a nutshell, the architecture is a Boolean function A[σ, J ],
which gives the response of the machine to the input σ’s for each choice of
the control parameters J . Typical architectures are the perceptron [6] or a
neural network, with discretized synaptic couplings.

For each given rule R and choice of J ’s, the machine may make some errors
with respect to the rule R. The total number of errors E[R, J ] depends on
the rule R and on the J ’s; it is given by

E[R, J ] =
∑

{σ}
(R[σ] −A[σ, J ])2 . (5)

For a given architecture the machine may learn the rule R without errors if
and only if is there exists a set of J ’s such that E[R, J ] = 0 . Simple counting
arguments tell us that there are rules that cannot be learned without errors,
if M is smaller that 2N . In most of the cases 2N is much larger than M
and therefore the number of admissible rules is a very tiny fraction of all the
possible rules.

In a learning session we give to the machine the information on the values
of R[σ] for L instances in the σ’s (L is generally much smaller than 2N ). A
learning algorithm tries to find the J ’s which minimize the error on these L
instances5. Let us denote by J∗ the J ’s found by the learning algorithm.

If the error on the other 2{N}−L instances has decreased as a consequence
of having learned the first L instances, we say that the machine is able to
generalize, at least to a certain extent. Perfect generalization is achieved when
no error is made on the other 2{N}−L instances.

For a given machine the propensity to generalize depends on the rule and
not all rules will be generalized by the machine. Our aim is to understand how

5 There are many different learning algorithms and some are faster than others.
The choice of the learning algorithm is very important for practical purposes,
but we will not investigate this point anymore.
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the propensity to learn different rules changes when we change the machine;
in this note, we are only interested in the effect of changing the architecture.

It was suggested by Carnevali and Patarnello in a remarkable paper [7]
that, if we suppose that the learning algorithm is quite efficient, the pro-
pensity of the machine to generalize a given rule (pR) depends only on the
architecture. The propensity (pR) may be approximated by the number of
different control parameters J for which the total number of errors is zero.

In other words we define the propensity6:

pR = 2−M
∑

{J}
δ(E[R, J ]) , (6)

where E[R, J ] is given by (1) and obviously depends only on the architecture.
The function δ is defined is such a way that δ(k) = 1 for k = 0 , δ(k) = 0 for
k �= 0 .

According to Carnevali and Patarnello, rules with very small propensity
cannot be generalized, while rules with higher propensity will be easier to
generalize. In their approach the propensity of a given architecture in ge-
neralizing is summarized by the values of the function pR for all the 2NI

arguments (the pR’s depend only on the architecture, not on the learning al-
gorithms). Of course the propensity cannot be directly related to the number
of examples needed to learn a rule. A more detailed analysis, taking care of
the relevance of the presented example, must be done.

6 A Statistical Approach to Propensities

Our aim is to use statistical mechanics techniques [8] to study in detail the
properties of pR.

The pR are automatically normalized to 1 (
∑

R pR = 1) and it is natural
to introduce the entropy of the architecture A:

S[A] = −
∑

R

pR ln(pR). (7)

The entropy S[A] is a non negative number smaller than or equal to
ln(2) min(2N ,M).

We could say that if the entropy is finite for large N , the machine is able
to represent essentially a finite number of rules, while, if the entropy is too
large, too many rules are acceptable.

As an example we study the entropy of the perceptron (without hidden
unity). In this case (for N = M odd) a detailed computation shows that all
the 2N choices of the J ′s lead to different rules (i.e. two different J ’s produce
a different output at least in one case) and therefore S[A] = ln(2)N .
6 The word ”propensity” is used with a different and uncorrelated meaning in

epistemology.
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We note that we could generalize the previous definition of entropy by
introducing a partition function Z(β) defined as follows

Z(β) =
∑

R

exp(β ln(pR)) =
∑

R

pβ
R. (8)

We could introduce the entropy S(β) associated with the partition function
[8] (S(β) ≡ dln[Z(β)/β]/dβ). The previously defined entropy (7) coincides
with S(1).

The value of the entropy as a function of β tells us which is the probability
distribution of the p′

Rs. There are many unsolved questions whose answer
depends on the model: existence of phase transitions, structure of the states
at low temperature, breaking of the replica symmetry . . .

Many additional questions may be posed if we consider more than one
architecture; in particular we would like to find out properties which distin-
guish between architectures that have similar entropies. For example we could
consider two different architectures (i.e. a layered perceptron or a symmetric
neural network) with N inputs and one output, and which have the same
entropy (this can be achieved for example by adjusting the number of in-
ternal layers or hidden neurons). It is natural to ask if these two different
architectures are able to generalize the same rules, or if their propensity to
generalize is concentrated on rules of quite different nature. Our aim is to
define a distance between two architectures, which will help us to compare
their different performances.

Let us consider two architectures A and B. A first step may consist of
defining the entropy of B relative to A as

S[B/A] = −
∑

R

pR(A) ln[pR(B)/pR(A)] . (9)

It can be shown that S[B/A] is a non-negative quantity that becomes zero
if and only if pR(A) = pR(B). The relative entropy is not symmetric and we
can define the distance (or better the difference) between A and B as

d(A,B) =
1
2
(S[B/A] + S[A/B]) . (10)

The introduction of a distance allows us to check if two different architectures
have the same generalization propensity; do they generalize the same rules,
or are the rules they can generalize that different? Unfortunately, the explicit
computation of the distance among two architectures may be very long and
difficult.

A very interesting and less understood question is how many examples
are needed to specify the rule for a given architecture. The results obviously
depend on the architecture (people with an high value of serendipity guess the
right rule after a few examples) and explicit computations are very difficult,
if we exclude rather simple cases.
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7 A Possible Definition of Intelligence

Having in our hands a definition of the distance between two architectures,
we can now come to a more speculative question: how to define the intelli-
gence of an architecture? One possibility consists of defining an architecture
I(σ, J), which is the most intelligent by definition; the intelligence of A can
be defined as −d[A, I]/S[A] (the factor S[A]has been introduced for norma-
lization purposes). The definition of the intelligent architecture I is the real
problem.

We suggest that a sequence of the most intelligent architectures is provi-
ded by a Turing machine (roughly speaking a general purpose computer) with
infinite amount of time for the computation with a code of length L. More
precisely the J ’s are the L bits of a code for the Turing machine (written in
a given language) which uses the σ as inputs. The function I(σ, J) is 1 if the
program coded by J stops after some time, and it is 0, if the the program
never stops. With this architecture we can compute the function s(R) (i.e.
the simplicity of a rule) [9], defined as s(R) ≡ pR(I).

It may be possible to estimate the function s(R) using the relation s(R) ≈
2−Σ(R), where Σ(R) is the algorithmic complexity (introduced in the first
section) i.e. the length of the shortest code which computes the function
R[σ].

If we would like to know the intelligence of an architecture A with entropy
S, we should consider a Turing machine with nearly the same entropy and
we should compute the distance between the two architectures.

The previous observations imply that algorithms which compute the rule
in a relatively short time are probably unable to implement many rules with
low algorithmic complexity and high logical depth. In many of the most
common algorithms the number of operations needed to compute the output
for a given input is proportional to a power ofN . For other algorithms (e.g. an
asymmetric neural network, in which we require the computation of a limiting
cycle) the computer time needed may be much larger (e.g. proportional to
2L). It is natural to suppose that this last class of algorithms will be more
intelligent than the previous one and will learn rules with low algorithmic
complexity and high logical depth more easily [11].

The puzzled reader may ask: if a general purpose computer is the most
intelligent architecture, why are people studying and proposing for practical
applications less intelligent architectures like neural networks? A possible
answer is that this definition of intelligence may be useful to disembodied
entities that have an unbound amount of time at their disposal. If we have
to find a rule and take a decision in real time (one second or one century,
it does not matter, what matters is that the time is limited) rules of too
low complexity and very large logical depth are completely useless; moreover
a computer can be used to define the intelligence but we have seen that a
computer is not well suited for finding and executing intelligent rules. The
requirement of taking a fast decision may be dramatic in some case, e.g. when
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you meet a lion on your path; evolution definitely prefers a living donkey to a
dead doctor and it is quite likely that we have not been selected for learning
rules with too large logical depth.

There are also other possible inconveniences with rules with too low com-
plexity, i.e. they may be unstable with respect to a small variation of the data
they have to reproduce. It is quite possible that the shortest program that
pronounce words in Italian may have a completely different structure of the
shortest program that pronounces words in Spanish, in spite of the similarity
of the two languages. We would like to have a program that may be used
for many languages, where we can add a new language without changing too
much the core of the program; it is quite likely that such a program would
be much longer than the shortest one for a given set of rules. Strong opti-
mization and plasticity are complementary requirements. For example the
nervous system of insects is extremely optimized and probably it is able to
perform the tasks with a minimal number of neurons, but it certainly lacks
the plasticity of mammalian nervous system.

Architectures that are different from a general purpose computer may
realize a compromise producing rules that have low, but not too low comple-
xity and high, but not to high logical depth. Moreover these architectures are
specialized: some of them (like neural networks) may be very good at working
as associative memories but quite bad in doing arithmetics. The problem of
finding the architecture that works in the most efficient way for a given task
is difficult and fascinating and, in many cases (e.g. reconstructing three di-
mensional objects from two dimensional images), it also has a very important
practical impact.

I hope that this short exposition has convinced the reader of the correctn-
ess of the point of view that learning from example can be done only by selec-
ting among already existing rules. This is what typically happens in biology
in many cases. The genetic information preselects a large class of behaviors,
while external stimuli select the behaviour among the available ones. This
procedure can be seen in action in the immune systems. The number of pos-
sible different antibodies is extremely high (O(10100)); each given individual
at a given moment produces a much smaller number of different antibodies
(e.g. O(108)). The external antigens select the most active antibodies among
those present in the actual repertoire and stimulate their production. Elde-
man has stressed that it is quite natural that a similar process happens also
in the brain as far as learning is concerned.

In conclusion at the present moment we have only started our exploration
of the properties of rules that are implicitly defined by an architecture. I
am convinced that the future will bring us many interesting results in this
direction. It is amazing how many areas have been affected by Kolmogorov’s
ideas, and how far reaching the applications.
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Abstract. Kolmogorov contributed directly to Biology in essentially three pro-
blems: the analysis of population dynamics (Lotka-Volterra equations), the reaction-
diffusion formulation of gene spreading (FKPP equation), and some discussions ab-
out Mendel’s laws. However, the widely recognized importance of his contribution
arises from his work on algorithmic complexity. In fact, the limited direct inter-
vention in Biology reflects the generally slow growth of interest of mathematicians
towards biological issues. From the early work of Vito Volterra on species competi-
tion, to the slow growth of dynamical systems theory, contributions to the study of
matter and the physiology of the nervous system, the first 50–60 years have witnes-
sed important contributions, but as scattered pieces apparently uncorrelated, and in
branches often far away from Biology. Up to the 40’ it is hard to see the initial loose
build up of a convergence, for those theories that will become mainstream research
by the end of the century, and connected by the study of biological systems per-se.

The initial intuitions of L. Pauling and E. Schrödinger on life and matter date
from this period, and will gave the first initial full fledged results only ten years
later, with the discovery of the structure of DNA by J. Watson and F. Crick, and
the initial applications of molecular structures to the study of human diseases few
years earlier by Pauling. Thus, as a result of scientific developments in Biology that
took place after the 50’, the work of Kolmogorov on Information Theory is much
more fundamental than his direct contributions would suggest. For scientist working
in Molecular Biology and Genetics, Information Theory has increasingly become,
during the last fifty years, one of the mayor tools in dissecting and understanding
basic Biological problems.

After an introductory presentation on algorithmic complexity and information
theory, in relation to biological evolution and control, we discuss those aspects rele-
vant for a rational approach to problems arising on different scales. The processes of
transcription and replication of DNA which are at the basis of life, can be recasted
into an Information theory problem. Proteins and enzymes with their biological
functionality contribute to the cellular life and activity. The cell offers an extraor-
dinary example of a highly complex system that is able to regulate its own activity
through metabolic network. Then we present an example on the formation of com-
plex structures through cellular division and differentiation in a model organism
(C. elegans). Finally we discuss the essential principles that are thought to rule
evolution through natural selection (theory of fitness landscapes).
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If one were to judge Kolmogorov’s contribution to Biology only on the ba-
sis of his papers explicitly devoted to the topic, one might conclude that it
is of moderate interest, at least in comparison with his direct intervention
in turbulence or dynamical systems. However, one should not forget that,
in the past, the limited availability of quantitative data in Biology made
this subject quite unattractive for mathematicians. It is therefore remarkable
that Kolmogorov nevertheless contributed to three different problems: the
analysis of population dynamics (Lotka-Volterra equations), the reaction-
diffusion formulation of gene spreading (Fisher Kolmogorov Petrovsky Pis-
kunov – FKPP– equation), and some discussions about Mendel’s laws. It is
however widely recognized that the relevance of Kolmogorov’s contribution
is connected to his work on algorithmic information. In fact, after the in-
itial intuitions of L. Pauling and E. Schrödinger on life and matter in the
’40s and, especially after the discovery, ten years later, of the structure of
DNA by J. Watson and F. Crick, it has become increasingly clear that in-
formation plays a major role in many biological processes. The penetration
of these concepts in Biology has led to the formulation of the central dogma
of genetics: the discovery of a one-directional flow of information from DNA
and genes to proteins, and from there to morphogenesis, cellular organiza-
tion and finally to individuals and communities. In this perspective, life is
now viewed as the execution of a computer program codified in the DNA
sequence. However, in spite of the elegance of this doctrine, one cannot for-
get the various difficulties that make the final goal of decoding the program
much more difficult than one could expect. First of all, in order to under-
stand what the life-code does without running it, it is necessary to know the
logic of the underlying “hardware”, or “wetware” as it is sometimes called.
Wetware is certainly structured in quite a different way from the hardware
of ordinary digital computers. Indeed, living system are highly parallel de-
vices, where the parallelism does not only enhance the “computer” perfor-
mance, but is also there to guarantee the required redundancy for a robust
functioning both in the presence of a noisy environment or of significant
damages even. As a result, in living systems, information-theoretic aspects
are profoundly interlaced with the physico-chemical mechanisms responsible
for their functioning and it could not be otherwise, considering that they
are the result of a self-assembling process that has evolved over billions of
years.

The roadmap of this contribution is as follows. The first section is de-
voted to an historical account of the connections between biology and the
other major scientific disciplines. This allows us to place Kolmogorov’s direct
contributions (exposed in the next section) in the right context. Next, we
give a brief presentation of information and algorithmic-information theories
in relation to biological systems. Finally, we discuss the problem of protein
folding as an example of how information, physics and dynamics concur to
biological processes at an almost microscopic level of description.
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1 Historical Notes

For a long time, biology has mainly dealt with definitions, classification and
description of objects connected with the evolution of life forms such as bac-
teria, plants, animals, biochemical substances, proteins, sugars or genes. The
great variety of life forms, present and past, has required a large amount
of ground work before general theories could be formulated. The Evolution
theory of Charles Darwin is a good case in point. Moreover, the dissection of
environments, organisms and cells has been practiced by many in the hope
that a precise identification of the objects of study is a necessary and perhaps
sufficient condition to understand their role: a sort of reductionism, like in
physics, with the difference that no simple general laws have ever been iden-
tified.

In this continuous search for an appropriate methodology, biologists have
been led to emphasize different aspects (ranging from mechanical, to chemi-
cal, thermodynamical, and molecular) depending on the current development
of science. As an example, in Fig. 1 we report an apparatus invented by an

Fig. 1. Girolamus Fabricius ab Acquapendente (1533–1619), machina, Museo Vil-
lasneri from [1]. This example of machina, a system to bring body parts into correct
place–proportions, is due to Fabricius ab Acquapendente, anatomist at the Univer-
sity of Padova. Acquapendente was Professor of Anatomy in Padova during the
same period in which Galileo Galilei, who was trained in his youth as a physician,
was teaching there (1592–1610). Acquapendente and Galileo were tutors of William
Harvey (1578–1657). Harvey, by application of the experimental method, discovered
blood circulation, while working at St. Bartholomew’s hospital in London [2]
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anatomist, Girolamus Fabricius ab Acquapendente at the turn between the
16th and 17th centuries; the machine was meant to be used in order to bring
parts of the human body into correct proportions.

The ingenious, naive, primitive, and somehow sadistic mean of fixing body
parts through the use of a reference frame is remarkable. The general idea
to fix it is already there with the means of the period, and has evolved with
human knowledge. The present level of technology allows the discussion of
atomic-molecular adjustments, but, in many cases, the conceptual aim has
not changed much since 1600, aside from a deeper understanding of the inner
details involved. The reported picture, nevertheless, warns that the desire to
find solutions to biological problems, drawing principles from other sciences,
has always been present from the very beginning. Sometimes it has been
stretched to the limit.

The limited success of this stratgegy has led in the last century to a strong
debate about two alternative approaches, the holistic and the reductionistic
view. The former one assumes that biological systems, in order to be under-
standable, must be considered and described in their wholeness; the latter
one understands that full operational knowledge can be reached only after
characterizing all of the single components. While the supporters of the holi-
stic view have, with a few exceptions, fostered more qualitative approaches,
the reductionistic attitude has been much more oriented towards quantita-
tive work (for a detailed historical account of this long story, the interested
readers are invited to consult the detailed book of B.O. Kuppers, [3], or the
historical account of E. Mayr, [4]).

However, in recent years the scenario has started to change and there
exists now a chance that the above two points of view can be reconciled wit-
hin a suitable information-theoretic approach. Indeed, information processing
represents a truly unifying concept that allows the investigation of seemingly
different issues such as the functioning of the brain, the cell cycle, the immune
system, or the “simple” task of recognizing food, moving towards it, and so
on. Furthermore, one should not forget the problem that has represented a
puzzle for centuries: the transmission from one generation to the next of the
“plan” for constructing new individuals.

The first results were obtained by G. Mendel (1865) and concerned sta-
tistical correlations between phenotypic characters of species. However, the
idea that characters are due to elementary units spread about 35 years later,
through the work of H. de Vries, C. Correns, and E. Tschermak. Later T.
Boveri, W. Sutton, and especially T.H. Morgan and collaborators established
the chromosomal theory, the link between characters, genes and the physical
existence of chromosomes. Still, all research in genetics up to the beginning
of the ’40s was done as an inductive reconstruction, through the study of
crossing and mutants, with no knowledge of the mechanisms and molecules
carrying this information.

All in all, spreading of information-theoretic concepts in Biology occurred
by following several convoluted paths. This is true also for the brain: the
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system that, more than any other, can be seen as an information-processing
unit. It is indeed quite illuminating to cite W.S. McCulloch about the way
he came, together with W. Pitts, to the development of his famous simplified
model of a brain, in which neurons were treated as boolean interconnected
switches [5],

I came, from a major interest in philosophy and mathematics,
into psychology with the problem of how a thing like mathematics
could ever arise – what sort of thing it was. For that reason, I gra-
dually shifted into psychology and thence, for the reason that I again
and again failed to find significant variables, I was forced into neuro-
physiology. The attempt to construct a theory in a field like this, so
that it can be put to any verification, is tough. Humorously enough,
I started entirely at the wrong angle, about 1919, trying to construct
a logic for transitive verbs. That turned out to be as mean a problem
as modal logic, and it was not until I saw Turing’s paper that I began
to get going the right way around, and with Pitt’s help formulated
the required logical calculus.

One of the major obstacles in the development of a theoretical Biology is
its nonstationary character: strictly speaking, there are no stationary states –
one can at most imagine that, on some scales, quasi-equilibrium is maintained.
It is, indeed, since the beginning of the last century that Evolution has been
recognized as playing a crucial role and the first models on the time variation
of species have been introduced. Initially, the spread of the ideas of C. Darwin
strongly depended on the country; in some cases they were partially accepted,
allowing evolution but not natural selection – such as, e.g., in France. In
others, these ideas were accepted much faster, as in the case of Russia [4]. In
the beginning of the century a dichotomy between naturalists and geneticists
took place on the way to proceed in order to understand evolution. The
former looked more at final causes, while the latter, more oriented towards
physical and mathematical methods, pursued a strict experimental approach.
The major achievement of Genetics in this period was the rejection of the
theory of acquired characters – i.e. the pangenesis hypothesis of C. Darwin,
or the theories of those biologists who followed J.B. Lamarck [4] –. Without
any knowledge of the physical base for the transmission of characters, the
demonstration was done by means of statistical methods, and by showing
the combinatorial character of traits due to more than one gene (the final
experimental demonstration came with work done by Salvatore Luria and
Max Delbrück in the ’40s).

Attributing a key role to information processing amounts to assuming that
the mechanisms through which, e.g., a face or an antigene is recognized, can
be understood without the need to characterize in full detail the underlying
physical processes and chemical reactions. This is indeed a fruitful hypothesis,
formulated already by von Neumann in the book on “The computer and
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the brain”, that has given rise to the formulation of several more-or-less
abstract models introduced in the last 20 years, in the hope of identifying
possibly universal mechanisms. One of the most successful models is the
Hopfield model [6] that exploited a possible analogy between an associative
memory and a spin glass. It shows how information can be robustly stored and
retrieved in a context where many connections can be accidentally destroyed,
as it is the case of our brains.

Although this is a route that will be useful to pursue in the future as well,
one cannot neglect biochemical processes, at least to understand how biolo-
gical systems can self-assemble. In fact, another discipline that is having an
increasing impact on Biology is the theory of dynamical systems. In the last
century it has been progressively recognized that most, if not all, processes
that are responsible for the functioning of a living system involve nonlinear
mechanisms which, in turn, are responsible for the onset of nontrival time
dynamics and the onset of spatial patterns. Initial rudimentary attempts to
figure out a physico-chemical explanation for the origin of life can already be
found in [7], although this remained an isolated attempt, still very qualitative
and rooted into J.B. Lamarck ideas. The modelling of oscillations, thanks to
the work of A.J. Lotka, where one of the well studied models was introduced,
can also be attributed to this path.

Later contributions came thanks to the advances of B.P. Belousov, with
his discovery of the chemical reaction that bears his name, the Belousov-
Zhabotinsky reaction. Belousov discovered this reaction while attempting to
model the Krebs cycle. The Krebs cycle, i.e. the tricarboxylic acid cycle, is
the name given to the set of reactions that transforms sugars or lipids into
energy. Degradation produces acetyl-CoA, a molecule with two atoms of car-
bon, which are transformed through the cycle in two molecules of CO2 while
producing energy in the process. He showed that the oxidation of citric acid
in acidic bromate, in the presence of Cerium catalysis – [Ce(IV)]/[Ce(III)] –,
produces oscillations in the reaction visible through changes in color of the
solution. The discovery was made in 1951 but the paper was rejected because
the nonequilibrium nature of the thermodynamic process was not understood.
He finally published his result in 1958 in the proceedings of a conference.
Along this same path, a theoretical paper on the spontaneous formation of
patterns in chemical systems was published by Alan Turing in 1952 [8]. Ho-
wever, while Belousov’s contribution had an experimental basis, it was not
until the beginning of the ’90s that Turing’s hypothesis was demonstrated
experimentally.

The relevance of dynamical system theory in Biology has definitely emer-
ged in the beginning of the ’60s in connection with the problem of gene
regulation. For instance, in a series of papers, by Jacques Monod, Francois
Jacob, and André Lwoff give some hints about the logic of living systems
and show that regulation of the β-Galactosidase system in bacteria can be
seen as a switch. The classical scheme of the Lactose Operon works as a sen-
sor of the presence-absence of Lactose. As a first approximation, a protein
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produced in the bacterial cell, the lactose repressor, binds to the operator,
a 22 base pairs (bp) long stretch of DNA in front of the genes. This blocks
RNA Polymerase that should start transcription of DNA in order to make the
mRNAs of the three genes which are part of the Operon (β-Galactosidase,
transacetylase and lactose permease). If the lactose is present, it binds to
the repressor, unlocking the operator and transcription begins. If the lactose
is absent, transcription is blocked. Aside from further complexities, this sy-
stem, in its baseline, can be considered similar to a boolean switch. These
ideas have been pointed out by Jacques Monod and Francois Jacob both in
technical papers and in popular articles. Particularly Monod stressed the fact
that the logic of living forms follows Boolean algebra, with a series of more
or less complex logic circuits at work.

The initial formalization of genes as switches, in a way similar to the
modelling of McCulloch and Pitts, is due to M. Sugita in 1961, soon followed
by S. Kauffman [9,10]. A similar approach to the study of the dynamics of
gene expression was pursued by B. Goodwin [11].

However, recognition that high-level cellular functions are regulated by a
plethora of proteins interacting in cells had to wait until the end of the ’80s,
beginning of the ’90s. Since then, it has become increasingly clear that the
lower dimensional levels in Biological systems, those of molecules, organelles
and cells, are as difficult as the higher dimensional one to solve. Several ap-
parently simple functions have revealed a degree of sophistication previously
unforeseen. As a result, the currently emerging picture of multicellular sy-
stems is much more similar to a highly regulated society, than to the simple
gene-protein scheme accepted for many years, [12–15].

2 Kolmogorov’s Direct Contributions

Before discussing the contributions of Kolmogorov to Biology, it is useful to
recall the situation in the Soviet Union. While acceptance of natural selection
in the USA and Europe had to overcome political and philosophical barriers,
this was not the case in Russia. An important figure in the development of
Evolution theories was Sergej S. Chetverikov (1880-1959). In 1906 he pu-
blished an important study on fluctuations in populations. He was able to
demonstrate that not all mutations have a negative impact on fitness: some
are almost neutral and, as shown later by Dobzansky, some can even increase
the fitness. Moreover, because of heterozygosity – the presence of two copies
of each gene – most mutants remain silent within the population, as shown
also by R.A. Fisher, and only homozigous individuals will be exposed to
selection. Chetverikov demonstrated these facts through back crossing expe-
riments with wild type Drosophila melanogaster. His most important result
was that the previous idea of the structure of organisms made of indepen-
dent genes had to be abandoned. No gene has a constant fitness because his
expression will depend on the global genetic background. However, his work
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was not well-known outside Russia and, after 1926, he had to leave his post
for political reasons [4,16].

Independently of the work done within the group of Chetverikov, around
1935, Kolmogorov became interested in some problems of mathematical gene-
tics, probably stimulated by the ongoing debate about Lamarckism occurring
in Europe and especially in the Soviet Union.

The first relevant contribution on the subject deals with the propagation
of “advantageous genes” (see chapter 9 in this book). The variable of interest
is the concentration 0 ≤ c(x, t) ≤ 1 of individuals expressing a given gene, at
position x and time t. In the absence of spatial dependence, the concentration
is assumed to follow a purely logistic growth, ċ ≡ F (c) = Kc(1 − c): this
dynamics is characterized by two stationary solutions, c = 0 and c = 1. If
K > 0, the former one is linearly unstable; any small fraction of individuals
carrying the “advantageous” gene tends to grow, but the limited amount of
resources put a limit on the growth which converges to the stable solution c =
1. In the presence of spatial directions, it is natural to include the possibility
of a random movement of the single individuals. As a result, the whole process
is described by Fisher’s equation [17], proposed in 1937, ten years after the
work of Chetverikov,

∂c

∂t
= D

∂2c

∂x2 +Kc(1 − c). (1)

c = 0 and c = 1 are still meaningful stationary solutions, but now the dyna-
mics of the spatially extended system is determined not only by the evolution
of small perturbations, but also by the propagation of one phase into the
other. This is a general observation whose relevance goes beyond the origi-
nal context, since it applies to all pattern-forming dynamical systems. This
specific model is important, since it is one of the very few nonlinear reaction-
diffusion equations that can be treated analytically. The relevant solutions are
front-like ones connecting the two different fixed points (e.g, c(x, t) → 1 for
x → −∞ and c(x, t) → 0 for x → ∞). The relative stability of the two phases
is thereby quantified by the front velocity that can be estimated by assuming
that the front travels without changing shape, i.e. c(x, t) ≡ f(x− vt) ≡ f(z).
By assuming that f(z) decays exponentially to 0, f(z) � exp(−γz) for large
z, one can easily investigate the front propagation by replacing this ansatz
into the linearized (1). As a result, one finds that

v(γ) =






K/γ + γD if γ > γ∗

2
√
KD if γ ≤ γ∗

where γ∗ =
√
K/D. If the parameter γ defining the initial profile is smaller

than γ∗, then the front propagates with the minimal velocity vmin = v(γ∗) =
2
√
KD. This is the well-known velocity selection mechanism (see also chapter

9 of this book).
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In the same year as Fisher’s paper, Kolmogorov, Petrovskii and Piskunov
[18] extended the solution of the problem to a fairly general class of local
growth-functions F (c), rigorously proving the following expression for the
propagation velocity

vmin = 2
√
F ′(0)D (2)

where the prime denotes the derivative w.r.t. the argument (Fisher’s result
is recovered by noticing that in the logistic case F ′(0) = K).

There are two other studies by Kolmogorov in genetics. The first one [19]
concerns the problem of statistical fluctuations of Mendel’s laws. The interest
in this subject is mainly historical, since it aimed at refuting a claim by
T.D. Lysenko that Mendel’s “3:1 ratio”-law is only a statistical regularity,
rather than a true biological law. More important is the second contribution
which extends the notion of Hardy-Weinberg (HW) equilibrium in population
genetics. HW equilibrium refers to the simplest setup, where allele statistics
can be studied. It assumes: i) random crossing between individuals; ii) absence
of mutations; iii) neutrality, i.e. absence of mechanisms favouring a given
allele; iv) closed population in order to avoid exchanges of alleles with the
environment; v) an infinite population. Mathematically, the problem can be
formulated as follows: Given the probability p (q = 1 − p) to observe the
allele A (a), the free crossing of genes A and a produces AA, Aa, and aa with
probabilities p2, 2pq, and q2, respectively and the frequency of individuals
follows a Bernoulli distribution.

The route towards more realistic models requires progressively relaxing
the above restrictions. Kolmogorov first investigated the effect of a diffusive
coupling in a system of otherwise closed populations and then studied the con-
sequences of selection simulated by a mechanism suppressing the occurrence
of the recessive allele a. Here, we briefly summarize the first generalization.
Kolmogorov considered a large ensemble ofN individuals divided into s popu-
lations, each containing the same number n of individuals, (N = sn). Like in
the HW scheme, random mating (free crossing) is assumed within each popu-
lation. Moreover, a number of k individuals are allowed to “migrate” towards
different populations and thus to contribute to the next generation. As a re-
sult of the mutual coupling, a population characterized by a concentration
p of the allele A experiences an average drift F (p) towards the equilibrium
value p∗ (corresponding to the concentration in the total population) with
variance σ2,

F (p) =
k

n
(p∗ − p) σ2(p) =

p(1 − p)
2n

.

Altogether, the distribution ρ(p, t) of populations with concentration p satis-
fies the Fokker-Planck equation,

∂ρ

∂t
= −∂Fρ

∂p
+

1
2
∂2σ2ρ

∂p2 , (3)



132 F. Bagnoli et al.

whose stationary solution is

ρ(p) =
C

σ2(p)
exp
{

2
∫
dp

F (p)
σ2(p)

}
=
pα−1(1 − p)β−1

B(α, β)
,

where α = 4kp∗, β = 4kq∗ = 4k(1 − p∗) and the Euler beta-function B(α, β)
accounts for the proper normalization. The frequency of individuals carrying
AA, Aa, and aa and, hence deviations from a pure HW-equilibrium can then
be estimated by simply averaging p2, p(1−p), and (1−p)2, respectively over
the distribution ρ(p).

Finally, Kolmogorov made some contributions in the modeling of popula-
tion dynamics, by generalizing the Lotka-Volterra equations. Such a model,
on the Volterra side, followed an experimental observation by the Italian bio-
logist Umberto D’Ancona, who discovered a puzzling fact. During the first
World War, the Adriatic sea was a dangerous place, so that large-scale fis-
hing effectively stopped. Upon studying the statistics of the fish markets,
D’Ancona noticed that the proportion of predators was higher during the
war than in the years before and after. V. Volterra, stimulated by his son
in law D’Ancona, formulated the problem in terms two coupled differential
equations,1

dN1

dt
= (ε1 − γ1N2)N1,

dN2

dt
= (−ε2 + γ2N1)N2,

N1 and N2 being the abundance of preys and predators, respectively. They
exhibit periodic behaviour whose amplitude depends on the initial conditions.
This feature crucially depends on the form of the proposed equations, because
the dynamics admits a conserved quantity E (analogous to the energy in
conservative systems)

E = γ2N1 + γ1N2 − ε2 log(N1) − ε1 log(N2),

while the periodic orbits are level lines of E. However, E has no direct biolo-
gical meaning. Kolmogorov argued that the term γ2N1 is too naive, because
it implies that the growth rate of predators can increase indefinitely with
prey abundance, while it should saturate at the maximum reproductive rate
of predators. Accordingly, he suggested the modified model [22]

dN1

dt
= K1(N1)N1 − L(N1)N2,

dN2

dt
= K2(N1)N2,

where K1(N1), K2(N1) and L(N1) are suitable functions of the prey abun-
dance and predators are naturally “slaved” to preys. With reasonable as-
sumptions on the form of K1(N1), K2(N1) and L(N1), Kolmogorov obtained
1 The same equations were derived also by A.J. Lotka some years before [20,21] as

a possible model for oscillating chemical reactions
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a complete phase diagram, showing that a two-species predator-prey compe-
tition may lead to either extinction of predators, stable coexistence of prey
and predator, or, finally, oscillating cycles. He also generalized the differential
equation to more than two species2, introducing most of the phenomenology
nowadays known in population dynamics.

Moreover, Kolmogorov pointed to the strong character of the assumptions
behind an approach based on differential equations. In particular, populations
are composed of individuals and statistical fluctuations may not be negligible,
especially for small populations. In practice, there exists a fourth scenario:
at the minimum of a large oscillation, fluctuations can extinguish the prey
population, thereby causing the extinction of predators too. It is remarkable
to notice how Evolution has developed mechanisms to reduce “accidental”
extintions. In most species, the birth of individuals takes place during a very
short time interval. In some cases, such as for example for herbivores like
the gnus – Connochaetes taurinus –, living in herds, the birth of puppies
is limited to a time span as short as one-two weeks. This mechanism helps
in preserving the species since the number of newborns highly exceeds the
possibility of killing by predators.

3 Information and Biology

Information is one of those technical words that can also be encountered wit-
hin natural languages. C.E. Shannon, who was mainly interested in signal
transmission, succeeded in formalizing the concept of information by delibe-
rately discarding semantic aspects. He states in the beginning of [24]

The fundamental problem of communication is that of reprodu-
cing at one point either exactly or approximately a message selected
at another point. Frequently, the messages have meaning; that is they
refer to or are correlated according to some system with certain phy-
sical or conceptual entities. These semantic aspects of communication
are irrelevant to the engineering problem.

In fact, before discussing the meaning of single messages, it is necessary to
distinguish among them. In this sense, the information becomes the number
of independent specifications one needs in order to identify a single message
x in an ensemble of N possible choices. Given, for instance, an ensemble
of N equiprobable messages xk, the unambiguous identification of a specific
message x requires taking log2N binary decisions. One can indeed split the
initial ensemble into two subsets and identify the one containing x. This
operation involves the minimal amount of information, a “bit”, and it must
be recursively repeated until the remaining set contains no more than one
element. Accordingly, the amount of information is I = I(x) = log2N bits.
2 See for instance [23]; the generalized version is sometimes referred as the Kolmo-

gorov model.
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If messages do not have the same probability, it is natural to define the
information of a single message as

Ik = − log2 p(xk) , (4)

and accordingly introduce the average information

H =
∑

k

p(xk)Ik = −
∑

k

p(xk) log2 p(xk) . (5)

The quantity H was defined as an entropy by Shannon, since it can also be
interpreted as an uncertainty about the actual message.

In many contexts, the object of investigation is an ideally infinite sequence
s1s2 . . . sn . . . of symbols (si belonging to an alphabet with 2b letters) that
can be viewed as a collection of strings Si of length n with probability p(Si, n).
In this case, the information is written as H(n) =

∑2bn

i=1 p(Si, n) log2 p(Si, n)
and the sum extends to the set of all possible strings. The difference hn =
H(n + 1) − H(n) is the information needed to specify the (n + 1)st symbol
given the previous n, while h = limn→∞ hn is the Kolmogorov-Sinai entropy
of the signal. The maximum value, h = b is attained for random sequences
of equally probable symbols, while h = 0 is a distinctive feature of regular
messages.

Another useful indicator is mutual information

M(k) =
∑

p(sj , sj+k) log2
p(sj , sj+k)
p(sj)p(sj+k)

, (6)

measuring the statistical dependence between two variables; M(k) = 0 if and
only if the two variables are mutually independent.

While the concept of information was being formalized, crucial progress
was made in Biology that led to the discovery of the DNA double-helix struc-
ture by J. Watson and F. Crick [25] in 1953. This was made possible by the
development of methods for the analysis of chemical structures based on X-
ray scattering, mostly by William and Lawrence Bragg together with the
intuitions of L. Pauling for the application of the method to the study of
protein and DNA structure [26]3. One should not however forget also the
impact of the book of E. Schrödinger on atoms and life [27], where he argued
about the existence of a disordered solid as the medium hiding the secrets of
life.

The crucial role of information within genetics has become increasingly
clear with the discovery that DNA and proteins are essentially string-like
objects, composed by a sequence of different units (bases and amino acids,
3 The story goes that the interest in protein structure was aroused in Pauling by

Warren Weaver, head of the Natural Sciences division of the Rockefeller Founda-
tion, who convinced him to work on the problem, financed by the Rockefeller’s
funds.
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Table 1. Genetic code, translating the codon triplets into amino acids, e.g. UUU
and UUC both corresponds to amino acid Phenylalanine (Phe), while Leucine (Leu)
is encoded by six possibilities UUA, UUG, CUU, CUC, CUA, CUG. Notice that the
symbol “T” is replaced by “U” since the translation codons → aminacids actually
involves RNA and not directly DNA. It is evident that most of the redundancy in
the code is due to the third base of each codon. Triplets UAA, UGA and UAG
are the stop-codons; they do not encode any amino acid but locate the end of the
protein

First Position Second Position Third Position
U C A C

U Phe Ser Tyr Cys U
U Phe Ser Tyr Cys C
U Leu Ser Stop Stop A
U Leu Ser Stop Trp G
C Leu Pro His Arg U
C Leu Pro His Arg C
C Leu Pro Gln Arg A
C Leu (Met) Pro Gln Arg G
A Ile Thr Asn Ser U
A Ile Thr Asn Ser C
A Ile Thr Lys Arg A
A Met (Start) Thr Lys Arg G
G Val Ala Asp Gly U
G Val Ala Asp Gly C
G Val Ala Glu Gly A
G Val (Met) Ala Glu Gly G

respectively) linked together by covalent chemical bonds which ensure a chain
structure. The properties of DNA, RNA and proteins are briefly recalled
below in a specific box; for further details, we recommend that the reader
consult any modern textbook on molecular biology [28,29].

The information contained in the DNA is first transferred to RNA and
eventually to proteins. In the latter step there is a loss of information because
the 43 = 64 possible different triplets of nucleotides – codons – are mapped
onto only 20 amino acids (see Table 1). This is therefore an irreversible process
and there is no way to go back from the proteins to DNA since different
nucleotide sequences can code for the same protein.

After the discovery of DNA’s structure and function, a shift of focus took
place in genetics and biology: all relevant properties became traced back to
the information stored at the molecular level. The DNA sequence is viewed
as “the fundamental issue” and the pursuit of the sequencing projects for
several organisms has been the main direct consequence of this view. The
centrality of DNA is so undisputed that human-like behavioral characteristics
are occasionally attributed to the chemical properties of this molecule.4 The

4 The use of the catchy metaphor of the selfish gene by R. Dawkins is a good
example.
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reasons for this are several, the main one being the appealing interpretation of
living organisms as complex computing machines. The DNA then represents
the code that the program actually runs. However, the relative ease with
which DNA molecules can be studied has contributed to this view, since the
DNA is relatively constant for a certain organism. Technological advances
during the last three decades have made the process sequencing routine,
through the use of automatic machines.

Given its naturally symbolic structure, DNA can be directly investiga-
ted by means of information-theoretic tools. The zero-th order question is
whether DNA can be treated as a stationary process, since the very com-
putation of probabilities requires this. Several studies have revealed that a
slow drift in the composition may be present and must be carefully accounted
for. Once this is made clear, one can proceed by computing the probability
p(Si, n) of each sequence of length n and thus determine the information
H(n). If the DNA was a purely random sequence of equally probable bases
(four), H(n) would attain its maximum value H(n) = 2n. This is almost
true for n ≤ 4 ÷ 5: for instance H(1) = 1.95 in the human chromosome 22
[30], the 0.05 difference from 2 being an indication of the slightly uneven
distribution of the four nucleotides. However, upon increasing n, hn decrea-
ses and for n = 10 it has already decreased down to 1.7. Going to larger
n-values is basically impossible, since one would need such large samples to
reliably determine the exponentially small probabilities, that even 107 − 108

bp are no longer sufficient. One partial way to go around the problem is
by looking for low-order correlations. A straightforward solution consists in
studying the standard correlation C(k) = 〈sjsj+k〉 − 〈sj〉2. Starting with
[31], several studies performed on different living organisms have revealed a
slow correlation-decay, C(k) � k−γ . Such observations have been confirmed
by studying also the mutual information M(k) (see (6)) which only requires
computing probabilities of pairs of symbols, k bp apart from each other. For
instance, in [30], a decay with γ ≈ 1/4 was found up to k = 105. Many factors
seem to be responsible for such a slow decay on different scales, but none of
them prevails. For instance, it is known that many almost-equal repeats are
interspersed within DNA and some are even as long as 300 bp, but they are
responsible for correlations only up to k ≈ 102,

3.1 Algorithmic Information

As soon it was realized that DNA is simply a long message possibly con-
taining the instructions for the development of a living being, algorithmic
issues immediately became relevant. In the decade across ’60s and ’70s, R.
Solomonoff, A. Kolmogorov, and G. Chaitin, [32–37], independently set the
basis of what is now known as algorithmic information theory. Consider the
sequences
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Sa = ATGCATGCATGCATGCATGCATGCATGCATGCATGC

Sb = AATAGATACAAACATGTCGACTTGACACATTTCCTA,

it is clear that Sa is somehow simpler than Sb. Suppose indeed that we have
to describe them; while the former string is fully characterized by the state-
ment 8 times ATGC, the latter cannot be better described than enumerating
the individual symbols. However, in order to make more quantitative our
considerations about “simplicity”, it is necessary to formalize the concept of
description of a given string. The Turing machine is a tool to answer this
question: it is a general purpose computer which, upon reading a series of
instructions and input data (altogether representing the program), produ-
ces the required string S. It is therefore natural to consider the program
length as a measure of the “complexity” of S. As proven by Solomonoff,
Kolmogorov and Chaitin this is an objective definition, provided that the
shortest code is first identified. In fact, on the one hand, there exist the so-
called universal Turing machines (UTMs) that are able to emulate any other
machine. On the other hand, there is no need to refer to a specific UTM,
since the unavoidable differences among the lengths of minimal codes cor-
responding to different UTMs are independent of the sequence length N .
More precisely, the Kolmogorov-Chaitin algorithmic complexity K(S), i.e.
the minimal code length, is known within a machine-dependent constant and
κ(S) = limN→∞ K(S)/N is an objective quantity. Unfortunately one conse-
quence of the undecidability theorem, proved by Kurt Gödel, is that there
is no general algorithm to determine κ(S) which thereby turns out to be an
uncomputable quantity.

While information deals with ensembles of strings, algorithmic informa-
tion aims at measuring properties of single sequences. In spite of this striking
difference, there is a close analogy to the extent that we now often speak of
“algorithmic information”. In fact, one may want to determine the probability
P (S) that a given UTM generates a string S when fed with a sequence of inde-
pendent, equally probable bits. Since Chaitin proved that K(S) = − log2 P ,
one can interpret K(S) as the logarithm of the probability that the minimal
code is randomly assembled. This observation is particularly suited to discuss
the role of chance within biological evolution. Indeed, if the DNA sequence is
a randomly selected program, even imagining the Earth as a gigantic parallel
processor performing independent tests every cubic millimiter each nanose-
cond,5 the probability P (DNA) should be larger than 10−50 and, accordingly,
K(DNA) < 200. In other words, it should be possible to compress the DNA
5 This is reminescent of an episode of the hitchiker’s guide to the galaxy by Douglas

Noel Adams (whose acronym is DNA)
http://www.bbc.co.uk/cult/hitchhikers/: Some time ago a group of hyper-
intelligent pan dimensional beings decided to finally answer the great question
of Life, The Universe and Everything. To this end they built an incredibly po-
werful computer, Deep Thought. After the great computer programme had run
seven and a half million years, the answer was “42”. The great computer kindly
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sequence down to less than 200 bits (or, equivalently, 100 bp). We cannot
exclude that this is the case, but it is hard to believe that all instructions
for the development, of e.g. humans, can be compressed within such a short
length!

An observation that helps to close the gap is that only part of the genome
is transcribed and then translated: according to the most recent results, less
than 2% of human DNA is transformed into proteins! A small fraction of the
remaining 98% contributes to the regulation of metabolic processes, but the
vast majority seems to be only accidentally there. This is so true that onion-
DNA contains 3 times more bp than human-DNA! Whatever the algorithmic
content of this so-called “junk” DNA, we are clearly left with the crucial pro-
blem of discovering the language used to store information in DNA. Several
researchers have investigated the DNA structure in the hope of identifying the
relevant building blocks. In natural and artificial languages, words represent
the minimal blocks; they can be easily identified because words are separa-
ted by the special “blank” character. But how to proceed in partitioning an
unknown language, if all blanks have been removed? Siggia and collaborators
[38] have proposed to construct a dictionary recursively. Given, e.g., the se-
quence Sn = s1 . . . sn, it is extended to Sn+1 = s1 . . . sns

′, if the probability
of Sn+1 turns out to be larger than the probability of Sn multiplied that of
the symbol s′. In the opposite case, the process is stopped and Sn is identi-
fied as a new word. The rationale behind this approach is that when a word
is completed, a sudden uncertainty arises due to the ignorance about the
newly starting one. The above approach has been successfully implemented,
allowing the recognition of several regulatory motifs.

Extracting information from the sole knowledge of the DNA sequence
seems however to be an exceedingly hard problem, since the products of DNA
translation interact with each other and with the DNA itself. In order to gain
some insight about living matter, it is therefore useful, if not necessary, to
look directly at the structure of the “final product” in the hope of identifying
the relevant ingredients. In this philosophy, many researchers have pointed
out that living matter is characterized by non-trivial relationships among
its constituents. Chaitin [39], in particular, suggested that the algorithmic
equivalent of mutual information represents the right setup for quantifying
the degree of organization of a sequence S. More precisely, he introduced
the d-diameter complexity Kd(S) as the minimum number of bits needed
to describe S as the composition of separate parts Si, each of diameter not
greater than d,

Kd(S) = min

[
K(α) +

∑

i

K(Si)

]
, (7)

pointed out that what the problem really was that no-one knew the question.
Accordingly, the computer designed its successor, the Earth, to find the question
to the ultimate answer.
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where K(Si) is the algorithmic information of the single ith piece and K(α)
accounts for the reassembling processes needed to combine the various pieces.
If d > N , Kd(S) = K(S) and Kd(S) increases as d decreases. The faster
the difference δK(S) = Kd(S) − K(S) increases, the more structured and
organized S is. The beauty of this approach is in the fact that no definition of
the constituents is required: they are automatically identified by determining
the partition that minimizes the d-diameter complexity.

In the case of a perfect crystal (i.e. a periodic self-repeating sequence),
K(S) is very low and Kd(S) remains low, even when S is broken into various
pieces, since there is no connection between the different cells. The same is
true in the opposite limit of a gas-like (purely random) sequence. In this case,
K(S) is maximal and remains large when S is partitioned in whatever way,
as all bits are, by definition, uncorrelated with each other.

3.2 DNA → RNA → Proteins

DNA (deoxyribonucleic acid) is a double-stranded polymer made of four ele-
mentary components called nucleotides: Adenine (A), Cytosine (C), Guanine
(G), and Thymine (T). Nucleotides are small molecules consisting of a phos-
phate group linked to a pentose (a sugar with 5 carbon atoms) which is in
turn bound to one of the bases. The two strands interact via hydrogen bonds
linking the pairs A-T and C-G. In its native state, the two DNA-strands spi-
ral around each other and assume the well-known double helix conformation,
as proposed by Watson and Crick in 1953 [25]. DNA is the carrier of the
genetic information required to build a living organism. Such information is
organized in units named genes which, from a molecular point of view, are se-
quences of DNA nucleotides capable of synthesizing a functional polypeptide.
Roughly speaking a gene is a portion of DNA which encodes a protein.

RNA (ribonucleic acid) is generally a single strand polymer made of the
same nucleotides as DNA, except for the replacement of Thymine with Uracil
(U). RNA is the outcome of DNA transcription, and is copied by using a given
portion of DNA as a template. RNAs which carry information to be translated
into proteins are called messenger RNAs, mRNA. Other RNAs, such as rRNA
and tRNA are involved in the translation of mRNA into proteins.

Amino acids are the proteins’ building blocks; even if their number is
potentially limitless, only twenty types of amino acid are involved in natural
proteins. Amino acids share a common structure: each of them is made by
at least one amino group -NH2 and a carboxyl group -COOH, both linked to
a central carbon atom Cα (α-carbon) which is in turn bound to a side chain
(functional group or residue). It is the chemical nature of the side chains that
differentiate amino acids from one another, conferring to them a structure
with chemical and physical specificity. Amino acids are connected together to
form the protein chain through peptide bonds, which are established by the
chemical reaction between the -NH2 group of one amino acid and the -COOH
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group of another. The sequence of amino acids determines the properties and
the function of a protein.

4 Proteins: A Paradigmatic Example of Complexity

In addition to being a technical term introduced in the theory of computation,
complexity is a word widely invoked in many different contexts ranging from
turbulence, to networks of any kind, spin glasses, chaotic dynamics and so on.
In spite of the great diffusion of this term, no clear definition of complexity has
yet been given. This will presumably remain so in the near future, since it is
unlikely that so many different problems share some well-defined properties.
Nevertheless, if there exists a scientific discipline where complexity is to be
used, it is Biology, both for the diversity of structures existing over a wide
range of scales and for the combination of several mutual interactions among
the very many constituents.

Proteins have been selected for their mixed digital and analog nature and
since they represent the point where the initial set of genetic instructions
is transformed into a working device capable of processing information. A
protein is uniquely defined by a sequence of amino acids, which in turn fol-
lows from the translation of a string of DNA. However, after a protein is
linearly assembled by the ribosomes of the cell, it begins to twist and bend
until it attains a three-dimensional compact structure – the native configura-
tion – that is specific of each protein and is crucial for its biological function.
Because of thermal fluctuations, the final shape is, however, not exactly de-
termined so that a protein can be seen as a digitally assembled analog device.
Once assembled, proteins represent the “working molecules”, supporting and
controlling the life of an organism. Structural proteins, for instance, are the
basic constituents of cells and tissues; other proteins store and transport
electrons, ions, molecules, and other chemical compounds. Moreover, some
proteins perform a catalytic function (enzymes), while others control and re-
gulate cell activity. Most of these processes involve many proteins of the same
type at once, so that it is tempting to draw an analogy with statistical me-
chanics, with a microscopic level (that of the single molecules) and a macros-
copic one, characterized by a few effective variables (e.g., concentrations and
currents). Accordingly, biological problems are akin to non-equilibrium sta-
tistical mechanics and the relevant questions concern how the definition of
specific microscopic rules translates into a given macroscopic behaviour.

The lack of theoretical tools for dealing with such systems prevents us of
finding general solutions, but analogies with known problems can sometimes
be invoked and many help in making substantial progress (examples are the
statistical mechanics of disordered systems and reaction-diffusion equations).
Moreover, modern microscopic techniques allow the visualization and ma-
nipulation of single molecules, so that it is now possible to study proteins
experimentally and clarify their mutual interactions.
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The first problem one is faced with is to understand how each protein finds
its native configuration. Indeed, consider a protein molecule with N amino
acids, and assume that there are q preferred orientations of each monomer
with respect to the previous one along the chain. Then, there exist qN local
minima of the energy that can a priori be meaningful “native” states. Moreo-
ver, one can imagine that the true native configuration is that corresponding
to the most stable minimum. If this picture were correct, it is hard to imagine
a polymeric chain exploring the whole set of minima in a few milliseconds (the
folding time can indeed be so short) to identify the absolute minimum: for a
chain with N = 100 amino acids and q = 3, no more than 10−50s should be
dedicated to each minimum! This is basically the famous Levinthal paradox
[40], which strongly indicates that protein folding can neither be the result
of an exhaustive search nor of a random exploration of the phase space.

How can proteins find their native state within such a huge number of
possible configurations? A significant step towards the answer was made by
Anfinsen and coworkers. They discovered, in an in vitro experiment – i.e.
outside the cell environment – that the enzyme ribonuclease, previously den-
aturated, was able to spontaneously refold into its native state when the phy-
siological conditions for the folding were restored. This work [41], that won
Anfinsen the Nobel Prize, demonstrated that the folding of protein molecules
is a self-assembly process determined, at a first approximation, only by the
amino acids sequence. It is not assisted by the complex cell machinery nor
by enzymatic activity6. This great conceptual simplification in the folding
problem gave great stimulus to its study. The activity was not restricted to
the fields of Biology and Biochemistry, but was tackled with the methods of
Physics, specifically of statistical mechanics. After Anfinsen’s work, attention
soon shifted towards the so-called “folding code”, i.e. the basic rules through
which the information stored in a one dimensional structure, the amino acid
sequence (also called primary structure), encode the three-dimensional pro-
tein structure (tertiary structure). From an information-theoretic point of
view, if one is to specify the native configuration out of the above mentioned
ensemble of possibilities, the required information is on the order of N log2 q.
This is compatible with the information contained in the DNA sequence,
equal to 6N bits. However, no algorithm has been found to predict the ter-
tiary structure, given the primary one: this seems to belong to the class of
hard computational problems. If a shortcut exists, a solution of the folding
problem will be more likely found by studying the underlying physics and
understanding its dynamics.

The first insight into the folding mechanisms came from the observation
of protein shapes. Experimental data on protein structures, collected through

6 Actually, futher studies revealed that large-protein folding can be assisted by
molecular chaperons (chaperonins) and other helper enzymes to prevent protein
self-aggregation and possibly dangerous misfolding. However the role of the cha-
peronins that are themselves proteins is still non fully elucidated.
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Fig. 2. A possible folding funnel scenario with the corresponding interpretation of
folding stages. In the horizontal axis, protein conformations are parametrized by
conformational entropy, while the energy is on vertical axis. On the side, typical
protein conformations corresponding to states in the funnel.

X-ray spectroscopy and nuclear magnetic resonance (NMR), show that fol-
ded proteins are not random arrangements of atoms, but present recurrent
motifs. Such motifs, forming the secondary structure of proteins, consist of
α-helices (L. Pauling), β-sheets and loops (see Fig. 2). The secondary struc-
ture formation plays a crucial role in the folding process, since it introduces
severe steric and topological contraints that strongly influence the way the
native state can be reached.

Another hint about the rules that govern the folding comes from the
analysis of the amino acid properties. The twenty natural amino acids can
be grouped into two classes: hydrophobic and polar. While polar amino acids
are preferentially exposed to water molecules, hydrophobic ones avoid contact
with water; this is possible by grouping them together. As a result, most of
the hydrophobic residues are buried inside the native structure, while the
polar ones are located near the surface. In 1959, Kauzmann [42] realized that
the hydrophobic effect is the principal driving force of the folding. However,
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even if the hydrophobic collapse has a prominent role in directing the folding,
it is not a sufficiently precise criterion to predict the protein structure from
the knowledge of the amino acid sequence.

Earlier theoretical efforts to understand protein folding were directly ai-
med at bypassing Levinthal’s paradox. For instance, it was proposed that a
protein, during folding, follows a precise sequence of steps (pathway) to the
native state without exploring the whole configurational space. This ensures
a fast and large decrease of conformational entropy and justifies the relatively
short folding times. However, even though it must be true that only a subset
of the phase space is explored, several works on the folding kinetics revealed
that folding of a given protein does not always follows the same route. The
pathway scenario implies also the concept of intermediate states, i.e. states
with partially folded domains that favour the correct aggregation of the rest
of the protein. However the determination of intermediates is critical because
they are metastable states with a relatively short lifetime.

A general theory of the protein folding requires the combination of po-
lymer theory and the statistical mechanics of disordered systems. In fact,
several features of the folding process can be understood from the properties
of random heteropolymers and spin-glasses. However, there is a great diffe-
rence between random heteropolymers and proteins: proteins have an (al-
most) unique ground state, while random heteropolymers have, in general,
many degenerate ground states. In other words, proteins correspond to spe-
cific amino acid sequences that have been carefully selected by evolution in
such a way that they can always fold in the same “native” configuration.

Many of these features have been investigated in what is perhaps the
simplest model of a protein, the HP model [43]. It amounts to schematizing
a protein as a chain of two kinds of amino acids, hydrophobic (H) and polar
(P) ones, lying on a three-dimensional cubic lattice. Accordingly, the primary
structure reduces to a binary sequence such as, e.g., HPPHHHPHH . . . .
Moreover, pairwise interactions are assigned so as to energetically favour
neighbouring of H monomers in real space. Investigation of HP-type models
and of more realistic generalizations has led to the “folding funnel” theory [44]
which provides the currently unifying picture for the folding process.

This picture, generally referred to in the literature as the “new view”, is
based on the concept of free-energy landscape. This landscape neither refers
to the real space nor to the phase-space, but to the space identified by the
order parameter(s). In order to construct such a picture, it is first necessary
to identify the proper parameters; the study of spin glasses has shown that
this may not be an easy task in disordered systems. In the case of protein
models, it was suggested that the proper coordinate is the fraction of correct
contacts, i.e. the number of monomer pairs that are nearest neighbours both
in the given and the “native” configuration. Theoretical considerations [44]
based on simplified models, such as the HP model, suggest that the landscape
of proteins is funnel-shaped with some degree of ruggedness (see Fig. 3).
The local energy oscillations are a manifestation of frustration, a typical
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Fig. 3. Ribbon representation of the protein chemo-trypsin-inhibitor (CI2), showing
the characteristic secondary motifs alpha-helix and β-sheets

property of many disordered systems, here induced by the conflicting polar
and hydrophobic interactions.

The funnel structure is the essential property ensuring an efficient collapse,
because it naturally drives the system towards the minimum of free energy.
Moreover, the protein can be temporarily trapped into the deepest relative
minima, which correspond to the intermediates observed in kinetics experi-
ments. Accordingly, the funnel scenario is able to reconcile the thermodyna-
mic and kinetic features of the folding process.
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Abstract. The contribution of ANK to the foundation of a statistical theory of
fully developed turbulence cannot be overestimated. His fundamental papers radi-
cally changed physicists’ approach to the study of turbulence and are still source
of inspiration for recent developments in the fields.

The intention of this paper is to give an up-to-date vision of our knowledge
about fully developed turbulence, with particular emphasis on the evolution of
Kolmogorov’s pioneering ideas. We start from the discussion of what is now called
the “Kolmogorov 1941” theory of turbulence and its relation with the state of the
art at that time. The second important contribution of Kolmogorov (the ”refined
similarity hypothesis” of 1962) is discussed in relation to the Landau objections to
the original 1941 theory. The last part of the review is devoted to recent develop-
ments and gives a modern view of concepts, such as isotropy and universality of
small scale fluctuations, already present in the original papers by ANK.

1 Richardson Cascade

The Navier-Stokes equations describing the spatio/temporal evolution of in-
compressible three-dimensional flows are known since Navier (1823):

∂tv + v · ∂v = −∂P + ν∆v
∂ · v = 0 (1)

where with v(x, t), P (x, t), ν we denote the local instantaneous velocity field,
the pressure field and the molecular viscosity, respectively. Nevertheless, as
noted by Frisch [1] this is one of those interesting situations where the perfect
knowledge of the deterministic equation of motion does not help very much
in the understanding of the global and local behavior of the flow, neither for
short nor long times. Very few rigorous results are known on the behavior of
(1), especially in the fully developed turbulent regime, i.e. when the external
forcing mechanism injects enough energy to produce a chaotic unpredictable
flow evolution. Fully developed turbulence is described by the Navier-Stokes
equations (1) in the regime of high Reynolds numbers Re, i.e. in the limit
when the ratio between the non-linear terms and the viscous, linear, contri-
bution become large: Re ∼ v∂v

ν∆u → ∞.
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In this chapter we review the seminal contributions of A.N. Kolmogorov
on the phenomenological, theoretical and analytical understanding of turbu-
lent flows, starting from the pioneering works in the 1939-41 years [4,5] and
ending with the paper published in the occasion of the Marseille Conference
in 1962 [2]. We also discuss the importance and fallout of A.N. Kolmogorov’s
ideas on modern turbulence research, in both experiments and numerical
simulations.

The basic brick of the entire work of Kolmogorov was the celebrated
Richardson energy cascade, as he himself stated in the 1962 paper [2]:

“[...] The hypothesis concerning the local structure of turbulence at
high Reynolds number, developed in the years 1939–41 were based
physically on the Richardson’s idea of the existence in the turbulent
flow of vortices on all possible scales η < r < L between the external
scale L and the internal scale η and of certain uniform mechanism of
energy transfer the coarser-scaled vortices to the finer”.

The Richardson cascade is a pictorial and phenomenological way to ex-
plain the transfer of fluctuations from the largest scale in the system, L to
the dissipative scale η where turbulent fluctuations are overwhelmed by the
viscous term. Richardson proposed that the energy transfer from the pum-
ping scale to the dissipative scales happens through a multi-step process,
where eddies break up to smaller eddies, small-eddies break up to smaller
and smaller eddies and so on ”to viscosity”. The main assumption is the lo-
cality of interactions in Fourier space, i.e. there is not any important direct
transfer of energy connecting very large scales with very small scales. Moreo-
ver, respecting the scale-invariance of NS equations, in the limit of vanishing
viscosity, the mechanism is supposed to happen in a self-similar way ; typi-
cal velocities, scales and times of eddies of size � can be estimated on the
basis of dimensional analysis without the introduction of any outer or inner
lengths. Namely, by denoting with δv(x, �, t) = v(x + �) − v(x) the velo-
city increments over a scale �, the typical local eddy turn-over time, needed
for a turbulent fluctuations of scale � to change its energy content, becomes:
t� = �/δv(�). Richardson’s scenario predicts that typical eddy-turn-over times
of eddies of size � become faster and faster by going to smaller and smaller
scales: t�′ < t�, if �′ < �. In the cascade process, small-scale velocity fluctuati-
ons may therefore expect to loose the memory of the large-scale fluctuations.
This is a qualitative explanation of the supposed – and experimentally obser-
ved – universality of small-scale turbulent fluctuations. By universality, we
mean the independence of large-scale forcing mechanism used to maintain the
flow. Universality of small-scale fluctuations is also strictly linked with the
so-called return-to-isotropy, i.e. to the assumption that small-scale turbulent
statistics is dominated by the isotropic component. Both self-similar behavior
and small-scale universality may hold only far enough from the boundaries.
Near the boundaries on the other hand, non-homogeneous effects and the
presence of solid walls may strongly perturb the flow at all scales.



Fully Developed Turbulence 151

In the years 1939-41, A.N. Kolmogorov published a series of papers where
the above phenomenological scenario reached a level of solidity such as, la-
ter on, people refer to them as “the 1941 Kolmogorov theory” or K41 for
short. First, A.N. Kolmogorov listed the minimal set of hypotheses requi-
red to deduce in a systematic way the self-similar and universal character
of small-scale fluctuations. Second, he determined quantitative information
on the statistical properties of velocity fluctuations at small scales. Third,
he derived the 4/5-law, the only known exact result describing the scaling
properties of the energy flux at large Reynolds numbers.

Another important contribution of A.N. Kolmogorov was to propose the
most suitable set of correlation functions able to highlight small-scale fluctua-
tions, the so-called structure functions. A generic velocity structure function
of order p, at scale �, is a p-rank tensor defined in terms of the correlation
function between p simultaneous velocity difference components, δv(x, �, t),
at scales �:

T {α}(�) = 〈δvα1(�) . . . δvαp(�)〉, (2)

where by the shorthand notation, {α}, we denote the set of p vectorial indices,
α1, . . . , αp. In (2) we have dropped both dependencies on time, t, and on the
spatial location, x, because we assume to be in a stationary and homogeneous
statistical ensemble. A simpler set of observables is made of the longitudinal
structure functions, i.e. the projections of the p-th rank tensor (2) on the unit
separation vector, �̂:

S(p)(�) = 〈[δv(�) · �̂]p〉 (3)

which, for an isotropic ensemble, are scalar functions that depend only on
the modulus of the separation, � = |�|.

This contribution is organized as follow. In Sect. 2, we review the main
bricks of the 1941 theory, focusing in particular on (i) the idea that turbu-
lent flows are characterized by a statistical recovery of symmetries at scales
small-enough, (ii) the experimental evidence for the existence of a dissipative
anomaly, i.e. that the energy dissipation tends to a non-vanishing constant
in the limit of high Reynolds numbers; (iii) the importance of the 4/5 law
and, finally, on the universality of small scale statistics. In Sect. 3 we review
the important step forward made by A.N. Kolmogorov in 1962, in response
to the criticisms made by Landau and Obhukov of the 1941 theory. There,
A.N. Kolmogorov further elaborated his 1941 theory to include also the possi-
bility to describe intermittency and anomalous scaling of small scale statistics.
In Sect. 4 we discuss the modern consequences of Kolmogorov’s contributi-
ons, including recent issues raised by experimental and numerical evidence
in – apparent – contrast with some of the hypotheses at the basis of 1941
and 1962 theories.
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2 Kolmogorov 1941 Theory

Fully developed turbulence is a spatio-temporal disordered motion involving
a wide range of scales. Large scales, of the order of the flow domain, are
the most important from an engineering point of view; they contain most of
the energy and dominate the transport of momentum, mass and heat. Small
turbulent scales, including the so-called inertial scales and dissipative scales,
are more interesting for a fundamental approach as they display properties
which are universal with respect to the flow configuration and/or forcing
mechanism. The fundamental contribution of A.N. Kolmogorov to the theory
of turbulence is based on a statistical description of the fluctuations of these
small scales, leading to very simple and universal predictions. His first work
is contained in three short papers which appeared in the USSR in 1941 and
which constitute what is now called the K41 theory.

2.1 Symmetries for Navier–Stokes

At the basis of the concept of universality is the idea that small scale turbu-
lence, at sufficiently high Reynolds numbers, is statistically independent of
the large scales and can thus locally recover homogeneity and isotropy. The
concept of homogeneous and isotropic turbulence was already introduced by
Taylor [6] for describing grid generated turbulence. The important step made
by A.N. Kolmogorov in 1941 was to postulate that small scales are statisti-
cally isotropic, no matter how the turbulence is generated. This hypothesis
is based on intrinsic properties of the dynamics, i.e. the invariance of the
Navier-Stokes equations (1) under the following set of symmetries [1]:

• space translations: x → x + r
• space rotations: (x,v) → (Ax, Av) with A ∈ SO(3)
• scaling: (t,x,v) → (λ1−ht, λx, λhv) for any h and λ > 0.

The first two symmetries are consequences of space homogeneity and isotropy
and are broken in the presence of boundaries or a forcing mechanism. As for
the scaling symmetry, a classical example is the so-called similarity principle
of fluid mechanics which states that two flows with the same geometry and
the same Reynolds number are similar. The similarity principle is at the basis
of laboratory modeling of engineering and geophysical flows.

The idea at the basis of Kolmogorov’s treatment of small scale turbulence
is the hypothesis that, in the limit of high Reynolds numbers and far from
boundaries, the symmetries of Navier-Stokes equation are restored for stati-
stical quantities. To be more precise, let us consider the velocity increment
δv(x, �) over the scales � 	 L. Restoring the homogeneity in a statistical
sense requires δv(x + r, �) law= δv(x, �), where equality in law means that
the probability distribution function (PDFs) of δv(x + r, �) and δv(x, �) are
identical. Similarly, statistical isotropy, also used by Kolmogorov in his 1941
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papers, requires δv(Ax, A�) law= δAv(x, �) where A is a rotation matrix. The
issue of restoring the small scale isotropy will be discussed in details in Sect. 4.

In the limit of large Reynolds number, the second Kolmogorov similarity
hypothesis [4] states, that for separation in the inertial range of scales η 	
� 	 L , the PDF of δv(x, �) becomes independent on viscosity ν. As a
consequence, in this limit and range of scales, scaling invariance is statistically
recovered with a larger freedom in the values of the scaling exponent:

δv(x, λ�) law= λhδv(x, �). (4)

The values of the scaling exponent, h, are now limited only by requiring that
the velocity fluctuations do not break incompressibility, so that h ≥ 0 [1].
In this section we discuss the self-similar K41 theory, limiting our solves to
the case where the turbulent flow possesses a global scaling invariance with
a unique scaling exponent h = 1/3. In Sects. 3.3 we relax the requirement of
global scaling invariance and we consider a possible extension of the theory
to the case of local scaling invariance.

2.2 Dissipative Anomaly

Because we are interested in the statistical properties of small scale turbulence
far from boundaries, we consider in the following the simple geometry without
boundary of a periodic box of size L. This geometry is also very convenient
for numerical simulations which can profit of the Fourier decomposition of
the velocity field. In the inviscid limit ν = 0, the Navier-Stokes equation (1)
conserves the kinetic energy

E = 〈1
2
v2〉 ≡ 1

V

∫

V

v2(x, t)d3x, (5)

where the brackets denote the average over the periodic box of volume V =
L3. Indeed, using (1) in (5), one obtains:

dE

dt
= −〈1

2

∑

ij

ν(∂ivj + ∂jvi)2〉 (6)

and thus the mean energy dissipation ε vanishes for ν = 0. Expression (6)
introduces the most important experimental fact in the theory of fully de-
veloped turbulence: In the limit Re → ∞ (which is equivalent to the limit
ν → 0) the mean energy dissipation attains a finite limit ε [3,7,8]. This is
actually true far from boundaries, in addition to boundary layers in general
possessing a Re dependence. Formally, we have

lim
ν→0

dE

dt
= −ε �= dE

dt
‖ν=0 (7)
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Fig. 1. Dimensionless mean energy dissipation D = εL/U3 as a function of Rλ =√
15Re from different direct numerical simulations (from [8])

which is the essence of the so-called dissipative anomaly. In Fig. 1 we pre-
sent a collection of numerical data on the Reynolds number dependence of
mean energy dissipation, supporting the existence of a finite asymptotic for
Re → ∞.

The observation that kinetic energy is asymptotically dissipated at a con-
stant rate has the important consequence that the flow develops small scales
in order to compensate the ν → 0 limit in (6). This picture was already in
the mind of Richardson about twenty years before Kolmogorov [9] when he
developed a qualitative theory of turbulence based on the idea of a turbu-
lent cascade in which the energy is transferred from the largest scales (where
energy is injected by mechanical forcing) down to the smallest scales (where
it is dissipated by molecular viscosity). The intermediate range of scales at
which energy is simply transferred, the inertial range, can be expected to
display universal statistics, independent of the forcing mechanism and of the
Reynolds number. Kolmogorov 1941 theory is the first attempt at a quanti-
tative theory of inertial scale statistics.

2.3 The 4/5 Law and Self-Similarity

In the first of his 1941 papers, A.N. Kolmogorov made the fundamental as-
sumption that in the inertial range of scales the distribution function for
δv(�) depends on � and ε only (and not on viscosity). As a consequence, di-
mensional analysis leads, assuming self-similarity, to the power-law behavior
for the structure functions in the inertial range

S(p)(�) = Cpε
p/3�p/3, (8)
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Fig. 2. Velocity power spectra at Rλ = 230 (thin line) and Rλ = 1840 (thick line)
normalized with Kolmogorov scale and velocity. The dashed line represents the
Kolmogorov spectrum, E(k) = Ck−5/3 with C = 2 (from [11])

where the Cp are dimensionless, universal and constant. In particular he made
the prediction for the second order structure function S(2)(�) or, equivalently
[3], for the energy spectrum

E(k) = Cε2/3k−5/3. (9)

Since the work of Grant et al. [10] in a tidal channel, there have been many
experiments (both in field and in laboratory) and numerical simulations sho-
wing an energy spectrum following Kolmogorov’s prediction (9) with con-
stant C � 2.0 [3,1]. We now know that the spectrum (9) is not exact, as
intermittency induces some deviations from the Kolmogorov exponent −5/3.
Nevertheless, these effects are small and their existence has been definitively
accepted only very recently (see the discussion in Sect. 4). For this reason,
K41 theory is still important not only for historical reasons but also for many
applications in modeling engineering and geophysical flows.

In Fig. 2, we present an example of experimental energy spectrum obtai-
ned from a water jet experiment. Note that the inertial range, showing the
Kolmogorov scaling (9), increases with Reynolds number.

In his third 1941 paper, A.N. Kolmogorov was able to obtain, starting
from Navier-Stokes equation, the exact expression for the third-order longi-
tudinal structure function, called the “4/5 law” after the numerical prefactor:

S(3)(�) = −4
5
ε�. (10)

This is still the only exact dynamical result on the behavior of velocity dif-
ferences in the inertial range. The fact that the third moment of velocity
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differences does not vanish is a consequence of the directional transfer (from
large to small scales) of energy on average. An important consequence, which
will be discussed in detail in connection with the intermittency issue, is that
the PDF of velocity differences cannot be Gaussian. In the following, we will
give a dimensional argument for the K41 predictions. The interested reader
can find in [1] a complete derivation of the 4/5 law.

Let us consider the typical velocity fluctuation v� at scale �, for example
the rms of the velocity difference δv(�). The eddy turnover time, i.e. the
characteristic time of variation of v�, can be estimated dimensionally as t� ∼
�/v�. This is also the time for the transfer of kinetic energy to smaller scales
in the cascade. The flux of kinetic energy from scale � to smaller scales is
thus

Π� ∼ v2
�

t�
∼ v3

�

�
. (11)

Because in the inertial range the energy is neither injected nor dissipated,
the energy flux (11) has to be independent of the scale � and thus it must
balance the mean energy dissipation ε. From (11) one obtains the prediction

v3
� ∼ ε�, (12)

which is the dimensional analog of the four-fifths law (10). We observe that
in this dimensional derivation (as in the complete derivation of (10) from
Navier–Stokes equation) we have only made use of the hypothesis of finite
energy dissipation in the Re → ∞ limit. Under the additional assumption
of self-similarity, the scaling exponent in (4) is forced to the value h = 1/3
by (12) and thus one obtains the K41 prediction for structure function expo-
nents, S(p)(�) = Cp�

ζ(p) with ζ(p) = p/3 (8).
The inertial range has a viscous small scale cutoff at the Kolmogorov

scale η. This scale can be dimensionally estimated as the scale at which the
local Reynolds number v��/ν (which measures the relative importance of the
inertial and viscous term in (1)) is of order unity. Using the Kolmogorov
scaling one obtains

η � LRe−3/4. (13)

Below the dissipative scale, the energy spectrum presents an exponential
or more than exponential decay as a consequence of the smoothness of the
velocity field. The extension of the inertial range, L/η, thus increases as
Re3/4.

We conclude this section by introducing the problem of intermittency. It
is now accepted that K41 theory is not exact because higher order structure
functions display unambiguous departure from the scaling exponents (8):

S(p)(�) = Cp

(
�

L

)ζ(p)

with ζ(p) �= p/3. (14)



Fully Developed Turbulence 157

Fig. 3. Velocity structure function exponents ζp for different experimental conditi-
ons. From Arneodo et al., Europhys. Lett. 34, 411 (1996)

In Fig. 3 we reproduce a famous collection of scaling exponents ζ(p) extracted
from several experiments [30] using the so-called ESS procedure [31]. Let
us recall that the scaling exponents are not completely free, since (11) still
requires ζ(3) = 1. Under very general hypotheses, one can also demonstrate
that ζp has to be a concave and nondecreasing function of p [1]. From Fig. 3
it is evident that the ζ(p) exponents are firstly universal and secondarly
anomalous, i.e. they are expressed by a non-linear function of p. This means
that the PDFs of velocity differences δv(�) vary as a function of length scale �
and the skewness of the velocity differences increases without bound as we go
to small scales (similarly, skewness based on longitudinal gradients increases
as a function of Reynolds number, instead of staying constant as predicted
by the K41 theory).

3 Kolmogorov 1962 Theory

In September 1961, a Colloquium on turbulence was organized by the CNRS
in Marseille, France. Organizers asked A.N. Kolmogorov to give a talk on the
state of the knowledge. He took this opportunity to emphasize a contempor-
ary contribution of Oboukhov, gave the new hypotheses which could justify
it, and its consequences. Due to their importance, this contribution and that
of Oboukhov were translated into English and published by the Journal of
Fluid Mechanics (“under the Editor responsibility”) in two short papers [2].
They constitute the basis of the Kolmogorov-Oboukhov 62 (KO62) theory.
At that time, there were no strong experimental motivations to call for an
improvement of the 1941 theory. The main criticisms were theoretical. The
motivation invoked by Kolmogorov himself in his paper lays in a remark by
L. Landau [2]:
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“But quite soon after [the K41 hypotheses] originated, Landau noti-
ced that they did not take into account a circumstance which arises
directly from the essentially accidental and random character of the
mechanism of transfer of energy from the coarser vortices to the fi-
ner”.

Indeed, when looking at Landau’s various remarks, as reported for instance
by Frisch [1], one can see that he emphasizes two points. First, that the
constants, such as the “Kolmogorov constant” C2 in the K41 expression for
the second order longitudinal structure function:

S(2)(�) = C2ε
2/3�2/3, (15)

cannot be universal. As 〈ε2/3〉 differs from 〈ε〉2/3, C2 must depend on the
distribution of ε at large scales, close to the integral scale, which cannot be
universal. The first point is not even discussed by Kolmogorov. There will be
no universality for constants. The second point is the one that Kolmogorov
emphasizes, and it is directly connected to the issue of intermittency intro-
duced in the previous section: vorticity, and thus probably dissipation too, is
known through direct observations to be concentrated in tiny regions of the
flow. This may lead to anomalous values for the scaling exponents, ζ(p), of
velocity structure functions in the inertial range (14). To take into account
this point, Kolmogorov emphasizes the role of the local dissipation. Namely,
by denoting with

ε�(x, t) =
1

4/3π�3

∫

|y|<�

dy ε(x + y, t) (16)

the coarse grained energy dissipation on a ball of radius � centered on x, and
with δv(�) the velocity difference over a scale �, Kolmogorov postulated that
the non dimensional ratio:

δv(�)

ε
1/3
� �1/3

(17)

has a probability distribution independent of the local Reynolds number
Re� = δv(�)�/ν, in the limit Re� → ∞. This is the Refined Similarity Hy-
pothesis (RSH). It links the scaling laws of velocity structure functions with
the scaling properties of the energy dissipation:

S(p)(�) = 〈[δv(�) · �̂]p〉 = Cp〈εp/3
� 〉�p/3. (18)

In a second group of hypotheses, Kolmogorov assumes that ln(ε�) has a Gaus-
sian distribution, whose variances behaves as:

σ2
� = A+ 9µ ln(L/�), (19)

where experiments give µ � 0.025 [45,46]. We shall first address the con-
sequences of these hypotheses, discussing intermittency and its physical in-
terpretations. Then we shall go to the experimental verifications, and the
discussions around the hypotheses.



Fully Developed Turbulence 159

3.1 Intermittency and Anomalous Scaling

From the log-Gaussian assumption it is easy to derive a parabolic shape for
the behavior of the scaling exponents ζ(p). In particular, the behavior of the
flatness factor F (�), which characterizes the shape of the distribution of δv(�)
is given by:

F (�) =
〈δv4(�)〉
〈δv2(�)〉2 ∼ �ζ(4)−2ζ(2) ∼ �−4µ. (20)

For a Gaussian distribution, F (�) = 3, independent of the scale. Larger va-
lues of F (�) correspond to thicker wings for the distribution compared to its
center. Velocity differences much larger than their rms are more probable as
� becomes smaller. This evolution of the PDF of velocity differences is called
intermittency. It is well observed [47], both along the scales in the inertial
range (η < � < L) and via its consequences for the PDF of velocity gradients
[48,15]. Let us now present a simple phenomenological interpretation of this
PDF evolution.

3.2 Multiplicative Cascade

As suggested by Kolmogorov himself, the laws he proposed can follow from
very simple arguments [22,23]. Let us consider a set of reference scales �n =
Lb−n in the inertial range with b, the inter-scale ratio, usually chosen equal
to 2. The simplest relation one may define among the PDFs of velocity dif-
ferences at scales �n and �n+1 is given by a multiplicative convolution:

δv(�n+1) = αn+1,nδv(�n), (21)

where αn+1,n denotes a suitable stochastic variable. The logarithm of αn+1,n,
φ = ln(αn+1,n), has a probability distribution Gn+1,n[φ] which defines the
statistical dependence between eddies of different sizes. Intermittent scaling
laws are then easily obtained through three assumptions:

• Scale invariance: Gn+1,n = Gb

• αn+1,n and δv(�n) are uncorrelated

• αn+1,n and αn+2,n+1 are uncorrelated.

Then one obtains for the scaling of longitudinal structure functions:

S(p)(�) = Cp

(
�

L

)ζ(p)

, (22)

with the scaling exponents uniquely fixed in terms of the basic distribu-
tion Gb[φ]: ζ(p) = logb〈exp(pφ)〉. In (22) the constants Cp depend on the –
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non universal – velocity distribution at the integral scale, L. By setting
αn+1,n = ε

1/3
�n+1

�
1/3
n+1/ε

1/3
�n

�
1/3
n , the multiplicative model recovers the Refined

Similarity Hypothesis (RSH) of Kolmogorov. The log-normal distribution
proposed by Kolmogorov in the 1962 is the only one possible choice for the
basic distribution Gb. The above model ensures the growth of the variance
of ln(ε�) in agreement with (19). The Central Limit Theorem is of no help
since the evaluation of 〈εp/3

� 〉 involves parts of the distribution which are out
of its range.

Note that the presentation of the above multiplicative cascade model can
be made without using the discretized inter-scale ratio b [47,14]. An attempt
was made to characterize the multiplicative stochastic process in terms of
structures in the flow [13]. Also, important developments have been achie-
ved using deterministic dynamical models for the turbulent energy cascade
(Shell Models), originating from the pioneering ideas of the Russian school
[24,1,25,26].

Through the Refined Similarity Hypothesis, the intermittency built by
multiplicative models for velocity differences can be directly translated to
the scaling properties of the coarse-grained energy dissipation, ε(�). The Re-
fined Kolmogorov Hypothesis can therefore be read as a statement about
the multifractal properties of three-dimensional measure defined by the local
energy dissipation.

3.3 Multifractal

The above process yields the concentration of the dissipation on small spots,
which corresponds to the Landau remark [1]. This in turn suggests a geome-
trical, rather than dynamical, interpretation of intermittency: intense spots
surrounded by calm regions. This has been generalized and formalized by
Parisi and Frisch [50], in the multifractal picture of turbulence. The starting
point is the invariance of the Navier-Stokes equations under scaling trans-
formation (4). If no characteristic scale appears in the inertial range, there
should exist locally self-similar solutions where velocity differences scale with
�h. In general, different exponents h are possible, but, again due to scale in-
variance, the subset of points where the exponent is h should be self-similar,
with fractal dimension D(h).

Covering the flow, whose size is L, with balls of size � requires (L/�)3 balls.
The regions that contain a point where the exponent is h add to (L/�)D(h).
Therefore the probability to find an exponent h at size � is:

P (h) = (L/�)D(h)−3. (23)

In the neighborhood of such a point, velocity differences at scale � should be
of order δv(L)(�/L)h. Thus an estimate of 〈δvp(�)〉 is given by:

〈δvp(�)〉 �
∫
δvp(L)(�/L)phP (h)dh � δvp(L)

∫
(�/L)3+ph−D(h)dh. (24)
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Such an integral, in the limit �/L → 0, can be estimated by the saddle-point
method:

〈δvp(�)〉 ∼ (�/L)ζ(p) where ζ(p) = minh(3 + ph−D(h)). (25)

The fractal dimension of singularities D(h) is not completely free, since (25)
must be consistent with the 4/5 law (10), i.e. ζ(3) = 1. This imposes the
inequality D(h) ≤ 3h+2 and that there exist a value h for which the equality
holds.

In spite of apparent differences, the present formalism is close to the
previous one. In particular, it can be verified that the log-normal hypothesis
corresponds to a parabolic shape for D(h):

D(h) = 3 − (h− ho)2

2µ
. (26)

The original K41 theory is recovered assuming perfect self-similarity, i.e.
a single scaling exponent h0 on the whole domains, i.e. D(h0) = 3. The above
inequality on D(h) then imposes h0 = 1/3.

3.4 Tests of Kolmogorov Hypotheses

A large body of work in the past decades has been devoted to test the various
hypotheses implicitely or explicitely proposed by Kolmogorov.

The Refined Similarity Hypothesis

An experimental validation of the RSH requires large conditional statistics
which were possible only recently. Even though attempts had been proposed
earlier, a systematic study was made in [51], where a one-dimensional record
of turbulent velocity measured by a hot wire was used. By using Taylor’s
Hypothesis, the estimation of the probability to have a coarse-grained energy
fluctuation ε(�) for a given velocity increment, P [ε(�)|δv(�)] gave a Gaussian
distribution at large � and a bimodal distribution at small �. This result was
corrected by Gagne et al. [52], where Gaussian statistics at all scales with a
variance depending both on the scale and ε(�) was obtained, in agreement
with Kolmogorov’s law. But for the test to have a physical meaning, it should
not give positive result with any random signal. Indeed, applying the same
procedure to a temperature signal instead of velocity gave the same Gaussian
conditional statistics, while it should not [53]. The uncontestable success
of this test could then be due to a statistical effect and to the long-range
correlation of dissipation (see later).

The Log-Normal Distribution

The log-normal hypothesis for ε� was addressed [54]. The quantity which plays
the role of ε(�) is not easy to measure. But even within the general frame of
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multiplicative cascades, without refering to dissipation, theorems show that
a pure Gaussian form for Gb would yield inconsistencies in the far tails of
velocity difference distributions. Moreover, log-normal distribution violates a
condition for the boundedness of the velocity field for large enough Reynolds
numbers [1]. However, these objections need not be taken into account, since
they concern incredibly small levels of probability. To take an example, the
Fourier heat law allows (small) signals to propagate faster than the velocity of
light, but nobody would discard it for this reason. So far, all serious attempts
to demonstrate deviations from the log-normal predictions have failed.

The Fokker-Planck Approach

Some recent approaches [60,61], looking directly at multipliers statistics,
could test their correlations. They experimentally verified the Markovian
properties of the cascade (independence between successive steps). They ob-
tained a Fokker-Planck equation for the velocity difference PDF P�[δv(�)]:

∂P�

∂ ln(L/�)
=
∂(D1P�)
∂δv(�)

+
∂2(D2P�)
∂δv(�)2

, (27)

where the functions D1[δv(�)] and D2[δv(�)] can be experimentally deter-
mined. A pure multiplicative cascade would give D1 linear and D2 purely
quadratic. Deviations appear at large scales, but these functions seem to
converge on this behaviour as � decreases.

Scale Invariance

An extension of scale invariance has been proposed in the following way
[47,57]: instead of using the scale separation, b, as a scaling factor, is it pos-
sible to find scaling laws in terms of more general scaling functions? Is it
possible to absorb finite-Reynolds number effects with a suitable redefinition
of the scaling? One possibility is to use the third order longitudinal structure
function, S(3)(�) as a reference function. This is because we know from the 4/5
law that it is exactly scale invariant in the limit of infinite Reynolds number.
Then, we may look at the scaling of different orders of structure functions
with respect to the third-order function. This is the Extended Self Simila-
rity (ESS), discovered independently by Benzi and coworkers [31]. Confirma-
tion of this extension of scaling was found also when looking at the flatness
〈δv(�)4〉/〈δv(�)2〉2 versus 〈δv(�)2〉 instead of �. However, these effects have
another possible explanation [45,58]. In the inertial range, typical velocity
differences δv(�) scale as �1/3 (K41 theory). In the dissipative range, where
the local Reynolds number is smaller than 1, they behave as �. Then the
decrease of all the 〈δv(�)p〉 is faster when in the dissipative range than in the
inertial one. However large energy events contribute more in 〈δv(�)4〉 than in
〈δv(�)2〉. 〈δv(�)4〉, thus enters the dissipative range at smaller � than 〈δv(�)2〉
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[62], and the flatness 〈δv(�)4〉/〈δv(�)2〉2 rapidly increases. For high Re, this
growth is much faster than the decrease of 〈δv(�)2〉 and the self-similarity
cannot be extended in this “Intermediate Dissipative Range” [62]. However,
for moderate Re, the two behaviours are accidentally similar, which gives the
illusion of ESS.

However, ESS cannot improve the precision on ζp, since it fails to extra-
polate to high Re [45,58].

Two Points Correlation

It was soon recognized [3] that the Kolmogorov hypotheses implied long-
range correlation between local dissipations, therefore velocity differences.
This was checked only recently, by J. Delour et al. [46]. They considered the
“magnitude” (in the astronomical sense) M(x) = ln |δv(�c)| of an interval of
length �c centered on x, and the correlation of this magnitude between two
points distant of �:

〈M(x)M(x + �)〉 − 〈M(x)〉2. (28)

with � > �c. After a rapid variation due to the short-range correlation of the
signs of δv(�c), they observe a slow decrease, with the correlation proportional
to ln(L/�).

This is in perfect agreement with a multiplicative cascade model. Using
the notations above, let us assume that �c = �n = b−nL and � = �j = b−jL.
Then, in the expression of δv(�c):

δv(�c) = αn,n−1 · · ·αj,j−1 · · ·α1,0L, (29)

all multipliers αj,j−1, · · · , α1,0 are common to the two velocity differences
considered, which reduces the variance of the logarithm of their ratio. Starting
from this observation, they could produce a “Multiplicative Random Walk”
having this long-range correlation, with the intermittency properties of real
velocity records.

4 Kolmogorov’s Legacy on Modern Turbulence

As already stated, Kolmogorov’s theories are founded on two major state-
ments. First, that for high enough Reynolds numbers – and far from the
boundaries – the small scales of turbulent flows are dominated by isotropic
fluctuations. Second, that small-scale fluctuations are universal, i.e. indepen-
dent of the large-scale set up. Both properties are strongly linked. Anisotropic
fluctuations are injected in the flow only through the large-scale forcing (or
by boundary effects). Therefore, any anisotropic fluctuations left at small
scales must be seen as the legacy of the large-scale physics. Moreover, the
total amount of small-scale anisotropy cannot be universal, being the direct
effect of the particular forcing used to maintain that particular flow.
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On the whole, experimental tests of Kolmogorov’s theories ran into in-
creasing difficulties when the data was analyzed with greater detail. The
first systematic attempt to check the isotropic scaling (8) for high Reynolds
number turbulence was done by Anselmet et al. [17]. The authors perfor-
med, for the first time, a high-order statistical test of K41 theory by going
beyond the usual two-point correlation. They also measured structure func-
tions of higher order, reaching the conclusion that anomalous deviations to
the p/3 scaling exponents existed. At that time, and for many year later,
the situation was very controversial both theoretically and experimentally.
Many claims that the observed deviations were due to sub-leading finite-
Reynolds number effects appeared. One should not underestimate the diffi-
culties of getting reliable estimates of the scaling exponents. First, one must
expect finite Reynolds number corrections to strongly reduce the extent of
the inertial range extension where scaling laws are expected and/or intro-
duce anisotropic corrections to the isotropic K41 predictions. Both effects
are usually present in all experiments and numerical simulations. Nowadays,
state-of-the-art experiments of turbulence in controlled geometry reach a ma-
ximum Reynolds numbers, measured on the gradient scales, of Rλ ∼ 5000,
which can be pushed to Rλ ∼ 10000 for atmospheric boundary flows (though
highly anisotropic!). The situation of Direct Numerical Simulations (DNS)
is more complex, the best resolution ever reached up to now being 40963,
corresponding to a Rλ ∼ 800. DNS allow a minimization of the anisotropic
corrections, thanks to the possibility of implementing periodic boundary con-
ditions and fully isotropic forcing, something which is out of reach in any real
experiments. However, even in DNS the discrete symmetries induced by the
finite lattice-spacing do not allow for a perfect isotropic statistics. We thus
either have high Reynolds number experiments which are strongly perturbed
by anisotropic effects, or DNS isotropic flow at moderate Reynolds numbers.
Therefore, one has to face the problem of how to disentangle isotropic from
anisotropic fluctuations and how to extract information on the asymptotic
scaling with a finite – often short – inertial-range extension. Only recently,
after many experimental and numerical confirmations of the results of [17],
did the situation become clearer [31]. We may affirm now with some degree
of certainty that the isotropic scaling exponents are anomalous, the K41 pre-
diction ζ(p) = p/3 is wrong, except for p = 3 which is fixed to be ζ(3) = 1
by the exact 4/5 law. More recently, the possibility of analytically showing
the existence of anomalous scaling in turbulent advection [30] eliminated the
arguments supporting the impossibility of having a Reynolds independent
anomalous scaling in any hydrodynamical system.

As stated above, according to the Refined Similarity Hypothesis, the an-
omalous scaling of isotropic structure functions is connected to the multif-
ractal properties of the three-dimensional measure defined in terms of the
energy dissipation [1]. It should be noted however that RSH related the iner-
tial range scaling to the scaling of dissipative quantities, and delicate issues
connected to small distance expansions and fusion rules are being disregarded



Fully Developed Turbulence 165

here [27–29]. At any rate, the RSH did not advance the calculation of the
scaling exponents beyond crude phenomenology.

4.1 Universality of Small-Scales Fluctuations

Universality of small-scale forced turbulence is at the forefront of both theo-
retical and experimental investigation of real turbulent flows [1]. The problem
is to identify those statistical properties which are robust against changes of
the large-scale physics, that is against changes in the boundary conditions
and the forcing mechanisms. The brute force method to check universality
quickly run into bad problems. In nature or in labs, one finds an enormous
variety of turbulent flows with different large-scale physics, as for example
channel flows, convective flows, flows maintained by counter-rotating disks to
list only a few. The problem is that all of these different experimental set-ups
suffer also from very different anisotropic corrections. Therefore it may be
very difficult on the experimental data to clearly disentangle the isotropic
component. A systematic study of small-scale universality is therefore limi-
ted to some degree of uncertainty (see below on the anisotropic fluctuations).
Still, the beautiful connection and comparison of data coming from more than
10 different experiments with different large-scale set-ups and with different
Reynolds numbers presented in [30] certainly supports the universal picture
(see also figure 3).

More recently, a different proposal to test small-scale universality was
made [12]. The idea is to relate the small-scale universal properties of forced
turbulent statistics to those of short-time decay for an ensemble of initial
configurations. An immediate remark is that one cannot expect universal
behavior for all statistical observables, since the very existence of anomalous
scaling is the signature of the memory of the boundaries and/or the external
forcing throughout all scales (due to the appearance of the outer scale in
the expression for structure functions). Indeed, the most one may expect is
that the scaling of small-scale fluctuations is universal, at least for forcing
concentrated at large scales. The prefactors are not expected to be so. There
is therefore no reason to expect that quantities such as the skewness, the
kurtosis and in fact the whole PDF of velocity increments or gradients be
universal.

This is the same behavior as for the passive transport of scalar and vec-
tor fields (see [36] and references therein). For those systems both the exi-
stence and the origin of the observed anomalous scaling laws have been un-
derstood and even calculated analytically for some cases in the special class
of Kraichnan flows [35]. However, carrying over the analytical knowledge
developed for linear hydrodynamical problems involves some nontrivial, yet
missing, steps. For the Navier-Stokes dynamics, linear equations of motion
only appear at the functional level of the whole set of correlation functions.
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In schematic form:

∂tC
(p) = Γ (p+1)C(p+1) + νD(p)C(p) + F (p), (30)

where Γ (p+1) is the integro-differential linear operator coming from the iner-
tial and pressure terms and C(p+1) is a shorthand notation for a generic
(p + 1)-point correlation. The molecular viscosity is denoted by ν and D(p)

is the linear operator describing dissipative effects. Finally, F (p) is the cor-
relation involving increments of the large-scale forcing f and of the velocity
field. Balancing inertial and injection terms gives a dimensional scaling, and
anomalously scaling terms must therefore have a different source. A natural
possibility is that a mechanism similar to the one identified in linear transport
problems may be at work in the Navier-Stokes case as well. The anomalous
contributions to the correlation would then be associated with the statistically
stationary solutions of the unforced equations (30). The scaling exponents
would a fortiori be independent of the forcing and therefore be universal. As
for the prefactors, the anomalous scaling exponents are positive and thus the
anomalous contributions grow at infinity. They should then be matched at
the large scales with the contributions coming from the forcing to ensure that
the resulting combination vanishes at infinity, as required for correlation fun-
ctions. Proof of the previous points is still out of analytical reach. Instead,
one may check the most obvious catch: the Navier-Stokes equations being
integro-differential, non-local contributions may directly couple inertial and
injection scales and invalidate the argument. In order to investigate the pre-
vious point, a comparison between the behavior of decaying turbulence with
two different ensembles of initial conditions was made in [12]. The first en-
semble contained initial conditions taken from a forced stationary run, while
the second ensemble was made up of random initial conditions. The fact that
only the decaying experiment with the initial conditions picked from the first
ensemble does not decay for times up to the largest eddy turn over time can
be seen as direct support for the statement that forced small-scale turbulence
is universal.

4.2 Anisotropic Turbulence

Although the phenomenological and experimental frameworks of fully-devel-
oped turbulent flows seem well founded, there are still many problems which
lack clear experimental validation and/or a theoretical understanding. Most
of them have to do with anisotropic fluctuations.

For example, the central issue of K41 phenomenology is the assumption
of return-to-isotropy for smaller and smaller scales. Recently, some detailed
analysis of small-scale isotropy on experimental and numerical shear turbu-
lence have been performed [40,32,44,37]. The ideal experimental set-up to
test such a problem is the case of a homogeneous shear flow. In this flow, the
shear is spatially homogeneous and points in one direction, i.e. the large-scale
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mean-velocity has the perfect linear profile: V = (V0y, 0, 0). The shear is gi-
ven by Sij = ∂iVj = δiyδjxV0. It is easy to see that we have a homogeneous
but anisotropic flow, the ideal case to study the influence of anisotropies on
small-scale statistics. Small scales must be compared to the characteristic
shear length, LS = ε1/3/S; only for r 	 LS may we expect that anisotro-
pic fluctuations are secondary with respect to the isotropic ones. The case
r � LS is of some interest in all situations where the shear becomes very in-
tense, e.g. very close to the walls in bounded flows. In the latter case, different
physics than the K41 phenomenology must be expected [16]. Fortunately, it
is not difficult to design ad-hoc experiments or DNS possessing an almost
perfect linear profile such as homogeneous shear [40,39,44]. A popular way
to measure small-scale anisotropies is to focus on the Reynolds number de-
pendencies of isotropic and anisotropic observables built in terms of velocity
gradients. For example, due to the symmetries of the mean flow, gradients
of the stream-wise component in the shear direction, ∂yvx, may have a ske-
wed distribution only due to the anisotropic fluctuations; they should have
a perfectly symmetric PDF in a perfectly isotropic flow. A natural way to
measure the residual anisotropy at small scales as a function of the Reynolds
numbers is to build mixed generalized Skewness based on gradients:

M (2p+1)(Rλ) =
〈(∂yvx)2p+1〉
〈(∂yvx)2〉 2p+1

2

. (31)

The above generalized Skewness should be exactly zero in an isotropic ensem-
ble, because its numerator vanishes. Of course, for a finite Reynolds number
one cannot expect that the large-scale anisotropy introduced by the shear
has completely decayed on the gradient scale. Therefore, a direct measure of
the rate of decay of (31) as a function of Reynolds number is a quantitative
indication on the rate of decay of anisotropy at small scales, i.e. a direct
check of the assumption of local isotropy made by Kolmogorov for Reynolds
large enough. Lumley set up a dimensional argument for anisotropic fluctua-
tions predicting, as a function of the Reynolds numbers based on the Taylor
scale, Rλ:

M (2p+1)(Rλ) ∼ R
− 1

2
λ (32)

independently of the order of the moment, n. Surprisingly, both numerical [44]
(at very low Reynolds numbers) and experimental tests (up to Rλ ∼ 1000)
showed a clear discrepancy from the dimensional prediction (32), see Fig. 4.

For example in [39] the authors quote an almost constant behavior as a
function of Reynolds number for the fifth order, M (5)(Rλ) ∼ O(1) and an
increasing behavior for the seventh order M (7)(Rλ), although in the latter
case some problems of statistical convergence may have contaminated the
result. These results have cast severe doubts on the basis of the K41 and K62
theories.
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Fig. 4. A collection of experimental and numerical results for the fifth order skewn-
ess M (5)(Rλ) as a function of Reynolds numbers taken from Fig. 2 of J. Schumacher
et al., Phys. Fluids 15, 84 (2003). Notation in the legend stands for SE reference
[41]; FT reference [43], SW reference [42]

In recent years, net advancements in the understanding of anisotropic tur-
bulence have been obtained thanks to systematic decomposition of velocity
correlation functions in the basis of the rotational operator, the SO(3) group
[18–20,32,33]. These works defined a clear theoretical, experimental and nu-
merical basis from which one may start to attack the return-to-isotropy dis-
cussed before. Moreover, the net improvement in the scaling quality measured
after the SO(3) decomposition allowed for a better quantitative understan-
ding of both isotropic and anisotropic turbulence. For scalar objects, such as
the longitudinal structure functions, the SO(3) decomposition reduces to the
projection on the spherical harmonics :

S(p)(�) =
∞∑

j=0

j∑

m=−j

s
(p)
jm(�)Yjm(�̂). (33)

As customary, the indices (j,m) label the total angular momentum and its
projection on a reference axis, respectively. Our interest here is concentrated
on the behavior of the projection on the isotropic sector, s(p)

j=0m=0(�), or any

of the anisotropic sectors, s(p)
jm(�) with j > 0. Theoretical and phenomenolo-

gical reasonings suggest that each projections has its own scaling behavior,
s
(p)
jm(�) ∼ �ζ

j(p), with the exponent depending on the j sector only. Now, the
recovery of isotropy can be restated in terms of the values of the scaling expo-
nents. The return-to-isotropy hypothesis made by Kolmogorov implies that
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the scaling exponents are organized in a hierarchical way:

ζj=0(p) < ζj(p), (34)

for any order p. All numerical [33,37], experimental [32,38] and phenome-
nological [34] works on this subject confirm the existence of the hierarchy
(34). Any turbulent flow should become more and more isotropic by going
to smaller and smaller scales. The persistence of small-scale anisotropy, as
measured by the generalized Skewness defined in (31), can simply be explai-
ned by noticing that it is a balance of isotropic and anisotropic effects of two
different order of velocity correlation functions, the (2p + 1)th order in the
numerator and the 2nd order in the denominator. It is easy to see that, due
to the presence of intermittency in the anisotropic sectors as well, one may
have a recovery of isotropy in the sense that the hierarchy (34) holds. One
may also still observe the persistence of anisotropies based on the gradient
statistics, as shown in Fig. 4 [37].

This paper is made of three different contributions. G.B. wrote Sect. 2,
B.C. Sect. 3 and L.B. Sect. 4.
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Abstract. In 1931 the monograph Analytical Methods in Probability Theory ap-
peared, in which A.N. Kolmogorov laid the foundations for the modern theory of
Markov processes [1]. According to Gnedenko: “In the history of probability theory
it is difficult to find other works that changed the established points of view and
basic trends in research work in such a decisive way”. Ten years later, his article
on fully developed turbulence provided the framework within which most, if not
all, of the subsequent theoretical investigations have been conducted [2] (see e.g.
the review by Biferale et al. in this volume [3]). Remarkably, the greatest advan-
ces made in the last few years towards a thorough understanding of turbulence
developed from the successful marriage between the theory of stochastic processes
and the phenomenology of turbulent transport of scalar fields. In this article we
will summarize these recent developments which expose the direct link between the
intermittency of transported fields and the statistical properties of particle trajec-
tories advected by the turbulent flow (see also [4], and, for a more thorough review,
[5]). We also discuss the perspectives of the Lagrangian approach beyond passive
scalars, especially for the modeling of hydrodynamic turbulence.

1 Passive Scalar Turbulence

In his 1941 paper, Kolmogorov postulated that in a turbulent flow at very
large Reynolds number, governed by the Navier-Stokes equation

∂tv + v · ∇v = −∇p+ ν∇2v , (1)

the statistics of velocity differences δrv = [v(x + r, t) − v(x, t)] · r̂ should de-
pend only on the size of the spatial separation between the two measurement
points r and on the average energy input εv 1. This assumption should be
valid across a distance r neither too large, in order to safely disregard the

1 The dependence on the position x and on the orientation of r can be omit-
ted by resorting to the hypothesis of statistical homogeneity and isotropy, i.e.
to the statistical invariance under translations and rotations, which is believed
to be correct over sufficiently small regions of space, and far enough from the
boundaries.

A. Celani, A. Mazzino, and A. Pumir, Turbulence and Stochastic Processes, Lect. Notes Phys.
636, 173–186 (2003)
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Fig. 1. The concentration of fluoresceine, a passive scalar, transported by a turbu-
lent jet flow (from Shraiman and Siggia, Nature 405 (2000) 639)

effect of the boundaries, nor too small, so that the effect of viscous dissipation
can be neglected.

It is important to point out that the Kolmogorov assumption is a state-
ment about the universality of small-scale turbulence. Indeed the only quan-
tity that matters is the average energy supplied to the system per unit time,
εv, irrespective of the detailed mechanism of injection and dissipation. Di-
mensional arguments2 then yield the celebrated Kolmogorov scaling law (see,
e.g., [6])

δrv ∼ ε1/3
v r1/3 . (2)

The same theoretical framework can be applied to the statistics of a pas-
sive scalar – for example, a dilute nonreacting tracer (see Fig. 1), or tempera-
ture under appropriate experimental conditions – governed by the advection-
diffusion equation

∂tθ + v · ∇θ = κ∇2θ + f , (3)

where f is an external source of scalar fluctuations. For scalar differences
δrθ = [θ(x + r, t) − θ(x, t)] one obtains the law3

δrθ ∼ ε−1/6
v ε

1/2
θ r1/3 (4)

independently proposed by Obukhov (1949) and Corrsin (1951), [7], where
εθ is the rate of injection of squared scalar fluctuations.
2 It should be noted that Kolmogorov derived from the Navier-Stokes equations

the exact relation 〈(δrv)3〉 = − 4
5 εvr. Notice that an exact relation can be drived

only for the third-order moment of velocity differences.
3 Also in this case an exact relation has been obtained by Yaglom: 〈δrv(δrθ)2〉 =

− 4
3 εθr.
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At scales much smaller than the viscous lengthscale η = (ν3/εv)1/4 (also
called the Kolmogorov scale) the velocity field is smooth, and the scalar
field obeys the Batchelor law 〈θ(x)θ(x + r)〉 ∼ εθσ

−1 log(η/r), where σ is
the typical velocity gradient at scale η [8]. Such behavior can be derived by
exploiting ideas borrowed from dynamical systems theory, without invoking
phenomenological assumptions. The key ingredient for the Batchelor law to
emerge is the presence of Lagrangian chaos, that is the exponential separation
of initially nearby fluid particle trajectories. For details on Lagrangian chaos
readers can refer to [9].

During the 50’s evidence started to accumulate that small yet significant
deviations from Kolmogorov scaling (2) were present. Experimental results
were consistent with a power law scaling of velocity differences, although with
an exponent depending on the order of the moment considered: 〈(δrv)n〉 ∼
rσ
n where σn is not linear with n, but rather a strictly concave function of

the order. This phenomenon goes under the name of anomalous scaling, or
intermittency4.

The failure of Kolmogorov’s theory poses an intriguing problem. An-
omalous scaling requires the introduction of at least one external lengths-
cale in order to match the physical dimensions. It could be the large scale L
where energy is injected, or the small scale η where the energy is dissipated,
or both. In any event, can we still expect to find some universality, or is
every observable affected by the details of energy supply and removal ? In
the latter case, fully developed turbulence would exit the realm of theoreti-
cal physics to enter the domain of engineering: one could not speak about
”turbulence” anymore, but rather about a collection of turbulent flows, to
be studied each per se. Although the answer to the above question is not
yet known for hydrodynamic turbulence, the situation appears to be under
control in the context of passive scalar turbulence: universality persists, yet
in a narrower sense than the one proposed by Kolmogorov. We will now recall
some of the steps that led to that conclusion.

In the 70’s, accurate experimental measurements of temperature fluc-
tuations showed that the Obukhov-Corrsin scaling (4) does not hold true,
i.e. the scalar field is intermittent as well. One observes indeed the scaling
〈(δrθ)n〉 ∼ rζn , where again the graph of ζn versus n is concave. Surpri-
singly enough, the deviations in the passive scalar case appear to be more
pronounced than those observed for velocity (see Fig. 2), culminating in the
saturation of scaling exponents with the order [10]. Those substantial de-
viations at large orders are due to the existence of intense structures in the
scalar field: the “cliffs”. On the two sides of a cliff the scalar can experience
variations as large as ten times the typical fluctuation across a very small

4 The name intermittency originates from the fact that going to smaller and smal-
ler scales the probability of weak excursions increases and, simultaneously, very
intense events become more likely. This reflects in the ”bursty” behavior observed
in experimental time series of velocity differences.
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Fig. 2. Scaling exponents of velocity and temperature obtained from experiments
in low temperature helium gas (from H. Willaime et al., Eur. Phys. J. B 18, 363
(2000); F. Moisy et al., Phys. Rev. Lett. 86 (2001) 4827)

distance (see [11] and references therein). A crucial observation is that the
presence of cliffs appears to be independent of the experimental flow, and
that those structures are present even in synthetic velocity fields generated
in computer simulations of passive scalar transport [12,13] (see Fig. 3). This
suggests the possibility that passive scalar intermittency can be present and
studied even in the context of simplified models of advection, among which
the most important has been the Kraichnan model.

2 The Kraichnan Model and Beyond

One of the simplest models of passive transport by a turbulent flow was in-
troduced by Kraichnan in 1968 [14]. The advecting velocity is prescribed: at
any given time it is an incompresssible Gaussian vector field whose incre-
ments scale as δrv ∼ rξ/2: no intermittency for the velocity statistics. This
is a reasonable representation of an instantaneous snapshot of a turbulent
flow (for ξ = 4/3, and neglecting the deviations from Kolmogorov scaling).
However, the Kraichnan velocity field changes from time to time without
keeping any memory of its past states, a highly unphysical assumption. The
asset of such an unrealistic choice is that it allows a mathematical treatment
that would be otherwise impossible for realistic, finite-time correlated flows.
As an example, it is easy to derive that the scaling exponent of the second-
order moment of scalar differences is ζ2 = 2 − ξ, i.e. the value expected by
dimensional arguments.

In 1994, Kraichnan, under a supplementary special assumption on the
scalar statistics, calculated all the scaling exponents ζn. Those of order lar-
ger than 2 turned out to be anomalous, despite the simple statistics of the
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Fig. 3. A snapshot of a passive scalar field from computer simulations of two-
dimensional turbulences (from A. Celani et al., Phys. Rev. Lett. 84 (2000) 2385)

advecting flow. Just one year later, three independent groups arrived at the
same qualitative conclusion. However, they used perturbative methods that
do not require additional hypothesis, albeit being viable only in some restric-
ted region of parameters (e.g. for ξ 	 1 or 2− ξ 	 1) [16–18]. Yet, the latter
values computed from first principles were different from those predicted by
Kraichnan. The controversy was then settled in 1998 by the computer simu-
lations by Frisch, Mazzino and Vergassola, who confirmed the presence of
intermittency in the range of parameters 0 < ξ < 2 [19]. The data were in
agreement with perturbation theory (See Fig. 4). For our present purposes, a
relevant aspect of [19] is the use of a particle-based (i.e. Lagrangian) method
to obtain information on the (Eulerian) statistics of the scalar field. The basic
observation is that the passive scalar equation (3) can be solved in terms of
Lagrangian trajectories. Particles are transported by the flow and are subject
to molecular diffusion, according to the stochastic differential equation5

dX = v(X, t)dt+
√

2κ dW (t) , (5)

5 It is worth recalling that, for κ = 0, (5) becomes a dynamical system which is
conservative for incompressible flows. In two dimensions, the introduction of the
stream-function ψ (v1 = ∂ψ/∂x2, v2 = −∂ψ/∂x1), reduces (5) to a Hamilto-
nian system with ψ playing the role of Hamiltonian. Important consequences of
such identifications (e.g., the Hamiltonian chaos and the celebrated Kolmogorov-
Arnold-Moser (KAM) theorem) can be found in the reviews by Livi et al. [20]
and by Celletti et al. [21] in this volume).
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Fig. 4. The deviation from dimensional scaling for the fourth-order moment of
scalar differences, measured in the Kraichnan model. The dash-dotted and dashed
lines are the predictions of perturbation theory in ξ and 2 − ξ, respectively (from
U. Frisch, A. Mazzino, and M. Vergassola, Phys. Rev. Lett. 80 (1998) 5532)

where W (t) is the multi-dimensional Wiener process. The link between Eu-
lerian and Lagrangian observables is given by the relation

θ(x, t) =
∫
dy

∫ t

−∞
ds f(y, s)p(y, s|x, t) , (6)

where p(y, s|x, t) is the probability to observe a particle at y at time s,
given that it is in x at time t. The propagator p evolves according to the
Kolmogorov equations

−∂sp(y, s|x, t) − ∇y · [v(y, s)p(y, s|x, t)] = κ∇2
yp(y, s|x, t) , (7)

∂tp(y, s|x, t) + ∇x · [v(x, t)p(y, s|x, t)] = κ∇2
xp(y, s|x, t) . (8)

It is therefore clear that there is a perfect duality between the description
of passive scalar transport in terms of fields and in terms of particles. Re-
levant observables as the n-point correlation functions6 〈θ(x1, t) · · · θ(xn, t)〉
are then simply expressed in terms of averages over the ensemble of trajec-
tories of N particles simultaneously transported by the flow.

Since every concept based on Eulerian observables must have its Lagran-
gian counterpart, one is naturally led to ask: what is the interpretation of
6 Note that the n-th moment of scalar differences 〈(δrθ)n〉 is just a linear combi-

nation of n-point correlation functions taken in n+ 1 special configurations.
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intermittency in the language of particle trajectories ? The answer to this
question is once more most easily given in the framework of the Kraichnan
model. Indeed, the time-decorrelation of the velocity field induces a great
simplification in the description of the N -particle statistics. One has that
the statistical evolution of trajectories described by the velocity averaged
probability

P (y1, . . . ,yn; s|x1, . . . ,xn; t) = 〈p(y1, s|x1, t) · · · p(yn, s|xn, t)〉v (9)

is a Markov process in the space of particle configurations. As a consequence,
P itself obeys a Kolmogorov equation

∂tP = MP, (10)

where M is a second order partial differential operator that describes the
diffusion of particles in the space of configurations (x1, . . . ,xn).

In 1998, Bernard, Gawȩdzki and Kupiainen [22] showed that, within the
Kraichnan model, the appearance of anomalously scaling terms in the n-point
correlation function of the scalar field is intimately related to the existence
of peculiar homogeneous functions Z of the n-particle configuration7,

Z(λx1, . . . , λxn) = λζn Z(x1, . . . ,xn), (11)

where ζn is the Eulerian anomalous exponent. These functions are preserved
on average by the Lagrangian evolution
∫
P (y1, . . . ,yn; s|x1, . . . ,xn; t)Z(y1, . . . ,yn) dy1 · · · dyn = Z(x1, . . . ,xn) ,

(12)

although dimensional arguments would predict a growth in time for the l.h.s
of (12) as |t− s|ζn/(2−ξ).

The Lagrangian interpretation of intermittency in terms of statistically in-
variant functions lends itself to a straightforward generalization, since (12) is
well defined for any statistical ensemble of fluid velocities, including realistic
ones. In the latter case, instead of proving that the functions Z are responsible
for anomalous scaling, one can proceed in the reverse direction: first extract
from numerical experiments the anomalous part of the n−point correlation,
and then check if this function is statistically preserved on average. A major
problem of this procedure is that one has to sample the correlation function
over a high-dimensional space: for example, to specify the geometry of four
points in three dimensions, one needs five “angular” degrees of freedom plus
the overall size of the configuration8. However, in two dimensions a triangle
7 These are called also “zero-modes” since they satisfy the equation MZ = 0 in

the limit of vanishing molecular diffusivity κ → 0.
8 The symmetries under translations and rotations reduce the degrees of freedom

from the initial number of twelve to the final six. The size of the configuration R
is usually defined by R2 = 1

N(N−1)

∑
i,j |ri − rj |2.
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is identified by only two angles, and this makes the problem tractable: Celani
and Vergassola [23] have indeed shown that the anomalous three-point corre-
lation function of a passive scalar advected by two-dimensional Navier-Stokes
turbulence is a statistically preserved function.

Another important connection between intermittency and stochastic pro-
cesses was pointed out by Gat and Zeitak in [24]. They considered the evo-
lution of the shape of a configuration, of n particles transported by the
Kraichnan flow: replacing time by the ratio of the sizes R2/R1 of the confi-
gurations they were able to conclude that this was a (discontinuous) Markov
process in the space of shapes. As the size-ratio increases, the probability
density function over the angular degrees of freedom approaches a stationary
distribution9 with a decay rate (R2/R1)−ζn , where the dependence on the
shape of the configuration is specified by the corresponding function Z. The
asymptotic distribution in the space of shapes has been studied in realistic
flows by Pumir et al. [25]. However, the direct measurement of Z from particle
evolution seems to be a much more difficult task [26].

A direct consequence of the identification of Z functions with the an-
omalous part of the correlation is that the scaling exponents are independent
of the choice of the forcing, since the latter does not appear in the definition
(12). Note, however, that the ζn still depend on the statistics of the velocity
field. The numerical prefactors that appear in front of the moments of scalar
differences are nonuniversal and change according to the details of f . This is a
narrower universality than the one prospected by Kolmogorov, as anticipated
earlier: it is an open question whether this picture applies to Navier-Stokes
turbulence as well [27].

3 Towards Navier-Stokes Turbulence

The study of the passive scalar problem has emphasized the importance of
considering the full multipoint correlation function. In addition, the use of
Lagrangian concepts has been crucial in identifying the key features respon-
sible for intermittency. The purpose of the present section is to present an
extension of the ideas discussed above, to address the problem of hydrody-
namic turbulence itself.

Decades of research have shown the importance of the dynamics of the
velocity gradient tensor, mab ≡ ∂avb, to understand many aspects of tur-
bulent flows [28]. Traditionally, the tensor m is decomposed as a sum of a
symmetric part, sab = 1

2 (mab + mba), the rate of strain tensor, and of an
antisymmetric part, Ωab ≡ 1

2 (mab − mba) = εabcωc, where ω = ∇ ∧ v is the
vorticity, and εabc is the completely antisymmetric tensor. In the absence of
viscosity, vorticity is stretched as a material line by the flow. This effect,
9 The stationary distribution of shapes F can be obtained by seeking a self-

similar solution to the equation ∂tF = MF , i.e. a function with the property
F (t,x1, . . . ,xn) = F (1,x1/t

1/(2−ξ), . . . ,xn/t
1/(2−ξ)).
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known as vortex stretching, is responsible for the production of small-scale
fluctuations in turbulent flows. The equation of evolution for the tensor m,
deduced from the Navier-Stokes equations (1), reads:

dmab

dt
≡ ∂tmab + (v · ∇)mab = −m2

ab − ∂abp+ ν∇2mab. (13)

The evolution equation for m is thus nonlinear. It involves a nonlocal contri-
bution due to the pressure Hessian term (∂abp), which ensures that the flow
is incompressible (tr(m) = 0).

Turbulent flows notoriously involve many length scales. The goal here
is to develop a theory, based on the essential ingredients of Navier-Stokes
turbulence, that describes the statistical properties of the velocity field as a
function of scale. We note in passing that the structure functions, defined as
the moments of the velocity differences between to fixed spatial points, are
inappropriate for our purpose. The first step in our construction consists in
extending the notion of the velocity derivative tensor, corresponding formally
to the scale r = 0, to a ’size’ r �= 0. We consider a homogeneous situation, so
the location of the center of mass of the tetrahedron ρ0 = (

∑
i ri)/4, as well

as its velocity u0 = (
∑

i vi)/4 are not important for our purpose.
To this end, we consider a set of four points, a tetrahedron, separated by

a scale r. We define the ”finite difference” tensor, M , based on the knowledge
of the velocities, (v1,v2,v3,v4) at the four points (r1, r2, r3, r4). In practice,
the matrix M is constructed by defining:

ρ1 ≡ (r2 − r1)/
√

2,

ρ2 ≡ (2r3 − r2 − r1)/
√

6,

ρ3 ≡ (3r4 − r3 − r2 − r1)/
√

12 (14)

u1 ≡ (v2 − v1)/
√

2,

u2 ≡ (2v3 − v2 − v1)/
√

6,

u3 ≡ (3v4 − v3 − v2 − v1)/
√

12, (15)
and:

M ≡ (ρ−1)a
i u

b
i (16)

where ρ−1 is the inverse of the tensor ρ, and a, b refer to spatial directions.
The recent development of flow diagnostic methods, such as the holographic
particle image velocimetry (PIV), now permits direct measurements of the
matrix M , and the study of its statistical properties in real laboratory flows
[29].

In order to theoretically investigate the statistical properties of the matrix
M as a function of scale r, we introduce a phenomenological approach. Na-
mely, we construct a stochastic model, with the proper non linear dynamics
of strain and vorticity coarse grained over the lagrangian tetrahedron. More
precisely, we decompose the velocity of the set of particles ri into a coherent
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component, ρ · M , and a fluctuation residual, ζ. This leads to the following
evolution equation for the variable ρi:

dρa
i

dt
= ρb

i ·Mba + ζa
i . (17)

The rapidly varying fluctuations are modeled by a Gaussian random term,
white in time:

〈ζa
i (t)ζb

j (0)〉 = Cu(δijρ2δab − ρa
i ρ

b
j)
√
tr(MMT ) δ(t). (18)

The evolution equation for the tensor M results in principle from the evolu-
tion equation for the velocity, written in the Lagrangian frame:

dVi

dt
= −∇pi. (19)

where pi is the pressure at point ri. Taking finite differences of (19), one
obtains formally an equation of the form:

dM

dt
+M2 = pressure Hessian. (20)

The key question is then how does the pressure Hessian correlate with the
velocity difference tensor, M . Here, we propose the following stochastic dy-
namics:

dM

dt
+ α(M2 − κabtr(M2)) = ξab. (21)

The factor α “renormalize” the nonlinear dynamics, as a result of the pressure
term. This has been justified by studying the correlation between the pressure
Hessian and the velocity gradient, m, or the finite difference tensor M [30,31].
A tetrad anisotropy tensor, κab ≡ [

∑
i(ρ

−1)a
i (ρ−1)b

i ]/[
∑

j,c(ρ
−1)c

j(ρ
−1)c

j ] was
introduced into the pressure hessian to make sure that the local pressure drops
out of the energy balance equation. The rest of the pressure Hessian term,
attributed to the nonlocal contribution, is modeled by a random Gaussian
term white in time:

〈ξa(t)ξb(0)〉 = CMερ−2 δ(t) (22)

obeying the Kolmogorov scaling. Here ρ−2 = 1/tr(ρ ·ρT ), and ε is the energy
dissipation term.

Our model is thus formulated as a set of stochastic differential equations.
The corresponding Fokker-Planck equation for the probability distribution
function P (M,ρ, t) is

∂tP = LP, (23)
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where the operator L is a second-order, diffusion-like operator, in the (18-
dimensional !) space (M,ρ). The Eulerian probability distribution function
P (M,ρ) satisfies LP = 0, with the normalization condition

∫
dMP (M,ρ) =

1. We also use the well-documented fact that the statistics of the velocity
field at the integral scale is Gaussian. The stationary solution thus can be
expressed in terms of a path integral,

P (M,ρ) =
∫
dM ′
∫
dt Gt(M,ρ|M ′, ρ′)P (M ′, |ρ′| = L). (24)

where G is the Green’s function of the problem. It can be expressed formally
by integrating over all trajectories in the (M,ρ) space, with the prescribed
boundary conditions, and with a statistical weight equal to ∼ exp[−S], where
S is the classical action [32]. In our problem it reads

Gt(M,ρ|M ′, ρ′) =
∫

DM
∫

Dρ exp[−S(M,ρ)], (25)

with the boundary conditions M(0) = M ′, ρ(0) = ρ′ and M(t) = M,ρ(t) = ρ.
The action S is defined by:

S =
∫ t

0
dt′
( ||Ṁ + α(M2 − κtr(M2))||2

CMερ−2 +
||ρ̇− ρ ·M ||2
Cu||M ||ρ2

)
. (26)

This formal solution of the problem relates the probability of having M
at ρ to the (known) probability of having M ′ at scale L. It leads to appealing
approximations, especially in the semiclassical limit (CM , Cu → 0), where the
trajectories contributing to the integral can be found around the minimum
of the action. A coarser approximation consists of taking the zero action
solution, i.e., the most probable solution passing through (M,ρ) [31].

The knowledge of the entire probability distribution function would allow
us to compute many interesting physical quantities. We restrict ourselves here
to a the invariants of the tensor which characterize the topology of the flow.
Specifically, the geometric invariants of the tensor M at a scale ρ are:

Q ≡ −1
2
tr(M2) and R ≡ −1

3
tr(M3) (27)

(remember that tr(M) = 0, by incompressibility). These two invariants pro-
vide a characterization of the local topology of the flow. The eigenvalues of
M are the roots of

λ3 + λQ+R = 0. (28)

The zero discriminant line: ∆ ≡ 27Q3 + 4R2 = 0, separates the (R,Q) plane
into two regions. For ∆ > 0, the flow is elliptic, with locally swirling stream-
lines. For ∆ < 0, strain dominates and the flow is locally hyperbolic.
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Fig. 5. The PDF of Q∗, R∗ invariants normalized to the variance of strain, Q∗ ≡
Q/ < s2 > and R∗ ≡ R/ < s2 >3/2 (“star” denotes normalization), obtained from
DNS at Rλ = 85, measured in the dissipation range ρ = 2η (left) and in the iner-
tial range ρ = L/2 = 32η (right). The isoprobability contours are logarithmically
spaced, and are separated by factors of 10. The dashed line corresponds to the
separatrix: 4Q3 + 27R2 = 0

Examples of probabilily distribution functions (PDF) of (R, Q) obtained
by direct numerical simulations (DNS) of homogeneous isotropic turbulent
flows are shown in Fig. 5. (Rλ = 85). The Reynolds number is moderate at
Rλ = 85. The results are shown for ρ ≈ 2η, corresponding to the dissipative
range, and for ρ ≈ L/2, in the inertial range, close to the integral scale.

In the dissipation range, the PDF shows a very skewed shape, with a
large probability along the separatrix ∆ = 0, R ≥ 0, and in the upper left
quadrant. At higher values of ρ, the PDF is more symmetric with respect
to the R = 0 line. The systematic evolution of the shape of the PDF as a
function of ρ can be easily inferred from these figures.

An example of a PDF computed from the stochastic model computed in
the zero action approximation is shown in Fig. 6.

In spite of the significant differences with the solution obtained from DNS
of the Navier-Stokes equations, this approximated solution of the model re-
produces the strong skewness of the numerical PDF, in particular the ac-
cumulation of probability along the zero discriminant line, for R > 0. A
better approximation, such as the semiclassical approximation, is expected
to produce a much better agreement with the DNS solutions.

The analysis of the model also sheds light on various aspects related to
the energy transfer occuring at scale r [33]. This is potentially very useful,
especially in the context of large eddy simulation (LES) of turbulent flows, a
method consisting in simulating the large scale of the flow and treating the
small scales by adequately parametrizing the energy transfer.
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Fig. 6. PDF of Q∗, R∗ invariants (normalized as in Fig. 5) calculated for the tetrad
model in the deterministic approximation for ρ/L = .5

4 Conclusions

The recent advances in the understanding of passive scalar turbulence and
the promising avenues that start to appear in hydrodynamic turbulence re-
sult from the fertile cross-breeding between two different subjects: the physi-
cal phenomenology of turbulence and the mathematical theory of stochastic
processes. These bear the indelible mark of the genius of Andrei Nikolaievich
Kolmogorov, to whom this review is dedicated.

We acknowledge numerous fruitful discussions with G. Boffetta, P. Ca-
stiglione, M. Chertkov, B. Shraiman, and M. Vergassola. This work has been
supported by the EU under the contract HPRN-CT-2002-00300 and by Cofin
2001, prot. 2001023848.
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22. D. Bernard, K. Gawȩdzki, and A. Kupiainen, J. Stat. Phys. 90 (1998) 519
23. A. Celani and M. Vergassola, Phys. Rev. Lett. 86 (2001) 424
24. O. Gat and R. Zeitak, Phys. Rev. E 57 (1998) 5511
25. A. Pumir, B. I. Shraiman, and M. Chertkov, Phys. Rev. Lett. 85 (2000) 5324;

P. Castiglione and A. Pumir, Phys. Rev. E 64 (2001) 056303
26. O. Gat, R. Zeitak, and I. Procaccia, Phys. Rev. Lett 80 (1998) 5536
27. L. Biferale, G. Boffetta, A. Celani, A. Lanotte, F. Toschi, and M. Vergassola,

Phys. Fluids 15 (2003) 2105; see also
http://xxx.arxiv.org/abs/nlin.CD/0301040

28. H. Tennekes and J.L. Lumley, A first course in turbulence , MIT Press (1983)
29. B. To, J. Katz, and C. Meneveau, J. Fluid Mech. 457, 35 (2002)
30. V. Borue and S.A. Orszag, J. Fluid Mech. 336, 1 (1998)
31. M. Chertkov, A. Pumir, and B. Shraiman, Phys. Fluids 11, 2394 (1999)
32. R.P. Feynman and A.R. Hibbs, “Quantum Mechanics and Path Integrals”, Mc

Graw Hill (1965)
33. A. Pumir, B. Shraiman, and M. Chertkov, Europhys. Lett. 56 379 (2001)



Reaction-Diffusion Systems:
Front Propagation and Spatial Structures

Massimo Cencini1, Cristobal Lopez2, and Davide Vergni3

1 INFM Center for Statistical Mechanics and Complexity, Dipartimento di Fisica
di Roma “La Sapienza”, P.zzle Aldo Moro, 2 Rome, Italy, 00185,
Massimo.Cencini@roma1.infn.it

2 Instituto Mediterraneo de Estudios Avanzados (IMEDEA) CSIC-UIB, Campus
Universitat Illes Balears Palma de Mallorca, Spain, 07122,
clopez@imedea.uib.es

3 Istituto Applicazioni del Calcolo, IAC-CNR V.le del Policlinico, 137 Rome,
Italy, 00161, Davide.Vergni@roma1.infn.it

Abstract. After the pioneering works of Kolmogorov, Petrovskii and Piskunov
[1] and Fisher [2] in 1937 on the nonlinear diffusion equation and its traveling
wave solutions, scientists from many different disciplines have been captivated by
questions about structure, formation and dynamics of patterns in reactive media.
Combustion, spreading of epidemics, diffusive transport of chemicals in cells and
population dynamics are just a few examples bearing witness of the influence of
those works in different areas of modern science.

1 Introduction

In many natural phenomena we encounter propagating fronts separating dif-
ferent phases. An unfortunately familiar example is the front separating burnt
from unburnt trees in forest fires. Similarly, propagating fronts play an im-
portant role in the speed of epidemics, in population dynamics, or in the
propagation of flames and chemical reactions. Most of these, at first glance
disparate phenomena find their common denominator in the presence of dif-
fusion (allowing the agent of an epidemic or a chemical substance to spread),
and reaction (that is the specific way in which different phases or chemical
components react); they are generically referred to as reaction diffusion (RD)
systems.

The prototypical model for RD systems is the nonlinear diffusion equation

∂

∂t
θ(x, t) = D

∂2

∂x2 θ(x, t) + F (θ) , (1)

introduced1 in 1937 in the seminal contributions of R.A. Fisher [2] and
A.N. Kolmogorov, together with I.G. Petrovskii and N.S. Piskunov [1] (here-
after referred to as FKPP), as a model to describe the spreading of an ad-
vantageous gene. (1) describes the spatio-temporal evolution of a population
1 As mentioned in Murray (see p. 277 in [3]), (1) was already introduced in 1906

by Luther.
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(concentration), θ(x, t), of individuals which diffuse with diffusion coefficient
D, and grow according to a specific rule F (θ). In FKPP it was shown that
(1) admits uniformly translating solutions – traveling waves.

Similar types of propagation phenomena are ubiquitous in Nature. The
concepts and mathematical tools developed in [1,2] stand at the foundation
of a still increasing number of applications of the reaction diffusion equations
in biology, chemistry and physics (see [3–6] and references therein).

The present knowledge on reaction diffusion systems is so vast that it
cannot be presented here in a comprehensive and systematic way. Therefore,
our discussion will be limited to introductory material. The first part of this
chapter is devoted to (1) in one spatial dimension, providing the reader with
the main concepts and simplest mathematical tools necessary to understand
its behavior. In the second part we enlarge the discussion to generalizations
of (1) in moving media with more than one reacting species and, to dimension
higher than one.

2 Front Propagation
in the Nonlinear Diffusion Equation

Perhaps the best way to start our discussion on (1) is to motivate it as ori-
ginally proposed in FKPP. Consider an area populated by individuals of the
same species. Suppose that θ(x, t)(∈ [0, 1]) is the concentration of the subset
of these individuals which possess a particular genotype that makes them
favored in the struggle for survival. In particular, assume that the survival
probability of individuals with that character is 1 + α (α > 0) times larger
than that of individuals without it. Then the evolution of the concentration
θ is ruled out by the standard logistic growth model

dθ
dt

= F (θ) = αθ(1 − θ) . (2)

The above equation implies that starting from θ≈0 there is an initial expo-
nential growth θ∼exp(αt) followed by a saturation at θ=1 due to nonlinea-
rities. Hence θ=0 is an unstable state and θ=1 a stable one.

If, during one generation (the period between birth and reproduction),
individuals move randomly in any direction, the concentration evolution is
given by (1) with F (θ) as in (2).

Now if the concentration of individuals with the advantageous genotype
is initially different from zero only in a small region, it is natural to ask how
it will spread over the space. Specifically, following Kolmogorov et al., let
us assume that at t = 0 there is a localized region in which the density is
different from 0 and 1, and on the left of this region θ=1 while on the right
θ=0. By means of the combined effect of diffusion and reaction, the region
of density close to 1 will expand, moving from left to right. In other words,
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at long times, θ(x, t) can be expressed as

θ(x, t) = Θv(x−vt) , (3)

meaning that the concentration behaves as a wave with propagation velocity
v and shape Θv.

The problem is to find the limiting shape of the density profile and the
limiting rate of its motion. Nowadays, after the efforts of many scientists
who extended and generalized Kolmogorov results to different classes of non-
linear terms and generic initial conditions, this problem is well understood
(see [5,7–9] and references therein). In the following, we present the modern
understanding of it, trying to remain at an intuitive level of discussion.

First of all let us consider the general equation (1), rewritten here for
convenience

∂

∂t
θ(x, t) = D

∂2

∂x2 θ(x, t) + F [θ(x, t)] . (4)

Without specifying the shape of F (θ), we assume two steady states, an un-
stable one (θ=0) and a stable one (θ=1), i.e. F (θ) satisfies the conditions

F (0) = F (1) = 0 ;

F (θ) > 0 if 0 < θ < 1 .
(5)

Pulled versus Pushed Fronts

Within the assumptions (5), we can distinguish two classes of nonlinear terms.
The first one, often indicated as FKPP-like, is characterized by having the
maximum slope of F (θ) for θ = 0 (as for the logistic growth model (2),
see Fig. 1a). This is the case of the so-called pulled fronts, for which the
front dynamics can be understood by linear analysis since it is essentially
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Fig. 1. a A typical FKPP-like production term (pulled dynamics). b A production
term which produces a pushed dynamics. The dashed and the dotted straight lines
display the linear behaviors F ′(0) ·θ and (supϑ {F (ϑ)/ϑ)}) ·θ, respectively. See text
for explanation
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Fig. 2. Pictorial representation of FKPP (pulled) and non FKPP (pushed) fronts

determined by the θ(x, t) ≈ 0 region (so the front is pulled by its leading
edge, see Fig. 2). In the second class, non FKPP-like, the maximal growth
rate is not realized at θ=0 but at some finite value of θ, see Fig. 1b, where the
details of the nonlinearity of F (θ) are important. In this case front dynamics is
often referred as pushed, meaning that the front is pushed by its (nonlinear)
interior, Fig. 2. In contrast with the previous case, a detailed non linear
analysis of (4) is now required to determine the front speed.

In both pushed and pulled fronts there exists a one parameter family of
traveling wave solutions, Θv, characterized by their velocity, v. In their work
of 1937, Kolmogorov et al. proved that not all velocities are allowed for pulled
fronts. Indeed the following inequality has to be satisfied

v ≥ v0 = 2
√
DF ′(0) .

Furthermore, the equality v= v0 is always realized for localized initial con-
ditions as the one mentioned above. This result was lately generalized by
Aronson and Weinberger [7] to generic production terms F (θ). They showed
that the minimal allowed front speed, vmin, is bounded by (see Fig. 1)

2
√
DF ′(0) ≤ vmin < 2

√

D sup
θ

{
F (θ)
θ

}
. (6)

Note that F (θ)/θ is a measure of the growth rate, and that for FKPP dyna-
mics supθ{F (θ)/θ}=F ′(0) which implies Kolmogorov’s result vmin =v0.

Equation (6) bounds the minimal front speed but, in principle, front so-
lutions with v ≥ vmin are allowed. Therefore, it is important to determine
the velocity that is actually selected for a given initial condition. This is the
so-called velocity selection problem.
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FKPP-Like Reaction Terms

Here, like Kolmogorov et al., we assume that F (θ) fulfills the conditions (5)
supplemented by

F ′(0) > 0 and F ′(θ) < F ′(0) for all 0 < θ ≤ 1 , (7)

ensuring that F ′(0)≡ supθ{F (θ)/θ}. Note that assumptions (5) and (7) are
quite reasonable in biological problems and in some chemical reactions. Then
from (4) by choosing the frame of reference moving with the front, i.e. with
the variable change z=x−vt, one obtains the equation for the limiting front
profile

D
d2

dz2Θv(z) + v
d
dz
Θv(z) + F (Θv) = 0 , (8)

with boundary conditions Θv(−∞)=1 and Θv(+∞)=0. In the case of loca-
lized initial conditions, Kolmogorov and coworkers rigorously demonstrated,
using a very interesting constructive proof, that (8) has a positive definite2

solution with speed

v0 = 2
√
DF ′(0) . (9)

Such a solution exists and is unique, apart from a linear transformation x′ =
x+c which does not modify the front profile.

The fact that many solutions with different velocities appear and that v0
is the minimal one can be inferred by linearizing (4) around θ=0 (which is
the important region in the pulled regime)

∂

∂t
θ(x, t) = D

∂2

∂x2 θ(x, t) + F ′(0) θ . (10)

In the neighborhood of θ(x, t) ≈ 0, i.e. in the leading edge region, it is rea-
sonable to expect an exponential profile (this is actually always observed) so
that for x → ∞, while t is large but finite, one can write

θ(x, t) ∼ e−a(x−vt) , (11)

where 1/a is a measure of the flatness/steepness of the profile. Substituting
the last expression in (10) one finds the link between asymptotic front shape
and speed,

v = Da+
F ′(0)
a

, (12)

2 Notice that if the initial concentration is non negative, θ ≥ 0, it will remain so
under the dynamics (4). This follows immediately by interpreting (4) as the heat
equation with heat source F (θ), which by (5) is never negative.
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which is the so-called dispersion relation. This equation implies that profiles
with different velocities are allowed and that there exists a minimal velocity,
vmin, realized for

a∗ =

√
F ′(0)
D

, (13)

corresponding to vmin =2
√
F ′(0)D, which is Kolmogorov’s result (9).

It is possible to show that front solutions with a > a∗ are unstable [8–10].
This is a crucial point which is at the core of the speed selection problem.
In fact, one observes that for steep enough initial conditions (a ≥ a∗), the
front always relaxes to the one of minimal speed. On the other hand, if the
initial conditions are sufficiently flat, a < a∗, the front propagates with a rate
given by (12), thus the broader the front (a → 0) the faster it moves. We will
comment further on the selection mechanism at the end of this section.

Let us now show how, for localized initial conditions, the front always con-
verges to the minimal speed solution [10]. Writing θ(x, t)=exp[F ′(0)t]φ(x, t),
(10) reduces to the heat equation for the new variable φ (∂tφ=D∂2

xφ) which
can be easily solved. In terms of θ the solution reads

θ(x, t) = exp(F ′(0)t)
∫ ∞

−∞
dy θ(y, 0)

exp
[
− (x−y)2

4Dt

]

√
4πDt

. (14)

Now introducing the coordinate z=x−v0t with v0 given by (9), and assuming
that θ(y, 0) is different from 0 only in a small region (say around the origin)
one obtains

θ(x, t) = Θv(z) ∝ exp(−z√F ′(0)/D − z2/4Dt)√
t

. (15)

This equation tells us that the front shape asymptotically approaches an
exponential profile with steepness ξ ∝ 1/a∗ =

√
D/F ′(0), and that the front

speed v0 is reached as

v(t) − v0 ∝ 1
t
, (16)

i.e. in an algebraically slow way3.

Pushed Fronts

For pushed fronts, conditions (7) are not satisfied. This implies that the ma-
ximal growth rate is not realized at θ=0 but in the non linear interior of the
3 Actually it has been shown that the prefactor 1

t
is universal in FKPP-like fronts

[10]. Here we just stress that the algebraic convergence comes out from the 1/
√
t

prefactor characteristic of the Gaussian propagator.
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front (see Figs. 1b and 2). As a relevant example, we mention thermally ac-
tivated chemical reactions (such as combustion) which are typically modeled
using the Arrhenius production term,

F (θ) = (1 − θ)e−θc/θ , (17)

where below the activation concentration, θc, essentially no reaction takes
place.

Contrary to pulled fronts, where the front speed can be determined by
linear analysis, a fully nonlinear treatment is required here. However, there
still exists a minimal velocity vmin below which no solutions are allowed. The
point is that now vmin > v0, with v0 given by (9).

A simple way to understand how a minimal velocity larger than v0 appears
can be found in [9]; here we report the main idea. We have seen that the
leading edge is always exponential, so that for large z=x−vt

Θv(z) = AF
v exp[−aF (v)z] +AS

v exp[−aS(v)z], (18)

where aF (v) and aS(v) (> aF (v)) are the flat and the steep modes, respec-
tively. In the above analysis (see (11)) to derive the dispersion relation (12),
we considered only the flat decreasing mode, because asymptotically it is the
leading one. However, seeing that (8) is a second order equation, a super-
position like (18) is expected in general. The constants AF

v and AS
v depend

on the velocity v, and on the nonlinear part of the front through matching
conditions with the interior. As before, allowed front solutions should be po-
sitive, meaning that at least AF

v should be positive. For large enough v, front
solutions are allowed since both AS

v and AF
v are positive. If, for v=vmin, the

amplitude of the leading mode AF
v goes to zero, then, for continuity, AF

v will
become negative for v < vmin, by continuity. As a consequence, the corre-
sponding Θv is not an allowed solution. Precisely at v = vmin (18) reduces
to the single fast exponential decrease. Note that for pulled fronts at v=v0,
aS(v0)=aF (v0); see [10] for a discussion about this point.

Also in this case, depending on the flatness/steepness of the initial profile,
the asymptotic front speed may be larger than vmin or may relax to the
minimal one.

Velocity Selection

For initial conditions steep enough (including localized initial conditions), the
front dynamics is always attracted by the minimal speed solution which, for
pulled fronts, corresponds to the linear prediction (9) and in general satisfies
the bounds (6). The detailed proof of this statement requires a non trivial
analysis which depends crucially on the simplicity of the model under consi-
deration. However, while remaining at the level of a general discussion, it is
interesting here to briefly recall the ideas at the basis of the modern way in
which the speed selection problem is understood.



194 M. Cencini, C. Lopez, and D. Vergni

The crucial concept is that of stability in the moving frame or marginal sta-
bility condition [5,8,9], which may be formulated as follows. If one adds a
small perturbation to the leading edge of a moving front, then the front is
stable if it outruns the perturbation (it is left behind and readsorbed) and
unstable if the perturbation persists at long times. The natural front is self-
sustained, i.e., the growth of the perturbation from the unstable to the stable
state should be the cause of front propagation. Therefore, the selected front
should be the one which is marginally stable with respect to the perturba-
tion. In this framework, the Aronson and Weinberger result [7] is equivalent
to the statement that the front with the lowest velocity is marginally stable
with respect to local perturbations of the state θ= 0. This criterion can be
generalized also to the case of pushed fronts [8,9].

2.1 Multiple Steady States

Up to now, we have considered reaction terms having only two steady states.
However, in a broad class of problems in nonlinear chemistry and popula-
tion dynamics, such as enzymatic reactions or insects spreading [3], multiple
steady states may be present, meaning that the production term have N ≥ 3
zeros in [0, 1]

F (θi)=0 , for i = 1, ..., N .

These fixed points can be stable or unstable and more complicated propaga-
tion phenomena can appear.

In order to provide the reader with some basic ideas, let us introduce a
simple and instructive description of the front propagation problem exploiting
an analogy with the dynamics of a point particle [5,8]. To make it evident let
us rewrite (8) as

Dÿ + vẏ + F (y) = 0 , (19)

where y≡Θv and the dots indicate derivatives with respect to the variable
z=x−vt, which here represents time. The reader will recognize that this is
the equation for a classical particle moving in a potential

V (y) =
∫ y

dy′ F (y′) , (20)

and damped with a friction coefficient v.
By using this analogy, the existence of a minimal velocity below which no

uniformly translating fronts exist has a clear interpretation [10]. Let us re-
consider, for the sake of simplicity, the case of pulled fronts in the framework
of linear analysis (10). We assume a parabolic potential V (y)=−F ′(0)y2/2.
Due to the friction term, at sufficiently long times, an exponential decay,
y(t) ∼ exp(−at) is expected (i.e. an exponential front profile at large di-
stances). Substituting this behaviour in (19) one obtains that

a(v) =
v ±√v2 − 4F ′(0)D

2D
.
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Fig. 3. Pictorial representation of the particle in the potential analogy. a Generic
production term with three steady states, two stable (filled circles) and one unstable
(empty circle). b,c,d The potential obtained with (20), see text for explanation on
the different situations

Now if the damping is not strong enough (v < 2
√
DF ′(0)) the particle will

reach y=0 in a finite time implying that the front becomes negative, which is
not allowed. Therefore, v=2

√
DF ′(0), is the minimal friction ensuring that

the particle will asymptotically reach y=0, and so the front remains positive
and monotonic.

This analogy becomes very useful in the presence of many steady states.
For example, let us consider a generic function F (y) having three zeros [5] (see
Fig. 3a): an unstable state at y0 and two stable states at y±, corresponding
to the minimum and the two maxima of the potential V (y), respectively. A
front (in general any structure connecting two different states) is a trajectory
connecting one of the maxima with the minimum, e.g. y+ with y0.

For the parabolic potential previously examined, for large enough v (say
v ≥ v1), the damping is efficient and y0 is reached at t → ∞, i.e. the front is
monotonic (see Fig. 3b). Below the critical damping v1, there is an overshoot
before reaching y0 and the particle will pass y0 going uphill toward y− before
ending in y0. Below another critical value v2 < v1, the approach to the
minimum may be underdamped the particle oscillate for ever in the valley
(Fig. 3c); that is, the leading edge of the front is oscillatory. There also exists
a critical value v3 (< v2 < v1) for which the particle lands precisely at y−,
the front joins two stable states (Fig. 3d). For v < vmin the orbit goes to
−∞, which does not represent a finite solution of (19). Notice that contrary
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to fronts propagating from an unstable state to a stable one, for those joining
two stable states there exists a unique solution and not a family of solutions
– only one speed value is allowed.

3 Reaction Diffusion Systems in Physics, Chemistry,
and Biology

In the previous sections we have examined the one-dimensional reaction dif-
fusion equation. Now, after a brief overview on the wide range of applicability
of this equation in different areas of science, we will focus on some specific
issues such as multicomponent chemical reactions, combustion and an ecolo-
gical problem concerning the distribution of plankton in the ocean.

Chemical Reactions

The most natural application of the nonlinear diffusion equation is the study
of chemical reactions taking place in the environment or in living organisms.
In multicomponent chemical reactions, one considers generalizations of (1)
where many species with their interrelations and diffusion constants are pre-
sent. Moreover, depending on the media where the reaction takes place, one
can have either an advection term (reaction in fluid flows), or spatial a de-
pendence in the diffusion coefficient [11] (reaction in heterogeneous media).
In the presence of many species, the problem becomes much more difficult.
Indeed a large range of behaviors, from oscillations to chaos [12], can be fo-
und. As it will become clear in Sect. 3.1, this gives rise to much more complex
spatio-temporal propagation phenomena than in the simple one-dimensional
case (see [3,4,13] and references therein).

Combustion Theory

Among the many chemical reactions, for its theoretical and practical impor-
tance, we mention the problem of combustion [14], which has been the first
application [15] of concepts and tools originally introduced in FKPP. Combu-
stion problems are complicated not only by the presence of many reactants,
but also by the fact that the burning of combustible takes place in a moving
medium, usually a fluid. Hence one has to include in (1) the advection by the
fluid velocity, and we speak about reaction advection diffusion systems. This
increases enormously the complexity and difficulty of the problem because
the fluid motion is usually very complex due to turbulence [16], which is ano-
ther fundamental aspect of Kolmogorov’s interests (see Chaps. 7 and 8). In
Sec. 3.2, we will discuss in details this problem.

Population Dynamics and Ecology

The contributions of Fisher and Kolmogorov on the reaction diffusion equa-
tion had a prominent role in the development of mathematical tools in popula-
tion dynamics and ecology (see, e.g., [3,6]). Indeed (1) and its generalizations
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are at the basis of many studies ranging from the rate of advance of invading
species [3] to human genetics and expansion [17]. Closely related to these
works, and building upon them, has been the development of models to ex-
plain patchiness in the distribution of organisms [6], which is an important
issue in the study of plankton and zooplankton in oceans [18]. In Sec. 3.2 we
will provide the reader with a brief overview on this ongoing research area.

Pattern Formation and Developmental Biology

Finally, it is important to mention that RD systems do not only give rise
to propagation phenomena but also to standing-patterns. Steady heteroge-
neous spatial structures, or patterns, appear in nature running from the very
small scales, like in colonies of bacteria, to astronomical ones, like the spiral
structure of some galaxies [3,5]. The interest is then in understanding pattern
formation.

A central role in pattern formation studies was played by another great
scientist, namely A. Turing4 who, in a classic paper [19], showed that pattern
forming instabilities may arise when considering RD mechanisms. Even if
there is no room here to properly treat this problem, we mention that already
from the early work of Turing it was realized the potentiality of RD modeling
for developmental biology [3]. Probably the most striking example in this
context is offered by morphogenesis, i.e., the development of patterns and
forms from the initially homogeneous mass of cells in the embryo of many
animals. For instance, think of the richness and beauty of patterns in animal
coats or butterflies leaves [3].

Nowadays, many different formation mechanisms have been identified,
and pattern formation in RD systems is a very vast and important area in
the study of non-equilibrium physical and chemical systems [5].

3.1 Multi-components Reaction Diffusion Systems

The general mathematical expression for a multicomponent reaction diffusion
system is just an extension of (4) to an N -components vector field θ =
(θ1, . . . , θN ),

∂θi

∂t
= Di∇2θi + Fi(θ1, . . . , θN ), (21)

where Fi(θ1, . . . , θN ) is the reaction term for the i-th species, and Di its
diffusivity. Very complex behaviors appear now depending on the intrinsic
reaction dynamics given by the Fi’s. To illustrate the phenomenology of these
systems, we will use two paradigmatic examples: the celebrated Belusov-
Zhabotinskii (BZ) chemical reaction [12], and the predator-prey (PP) systems
[6], with many applications in populations dynamics and ecology.
4 From a historical point of view it is interesting to know that Turing was not aware

of the works of Kolmogorov, Petrovskii and Piskunov [1], which was poorly known
in the West for many years.
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The BZ reaction is probably the most widely studied, both theoretically
and experimentally, oscillating (it can also have excitable or chaotic beha-
vior) chemical reaction. It involves more than 40 elementary reactions which
result in changes of several dozens of intermediate substances. The basic me-
chanism consists of the oxidation of malonic acid by bromate ions, catalyzed
by, e.g., ferroin and ferriin. For some values of the reagent concentrations,
periodic oscillations are observed in these catalysts, producing a periodic co-
lor change oscillating between red (ferroin) and blue (ferriin). More details
can be found, for example, in [12]. Concerning the PP systems, the simplest
model involves two components, predators and preys (the concentrations of
which are denoted by v and u, respectively), and can be written

du

dt
= ru(1 − u

u0
) − cvf(u) +D∇2u, (22)

dv

dt
= avf(u) − bv +D∇2v, (23)

where r, c, a, b, u0 are positive parameters and D is the diffusivity. The first
term on the rhs of (22) indicates the intrinsic birth-death of the preys; in the
second term, f is the prey consumption function per predator. Analogously,
the first term on the rhs of (23) is the benefit from predation and the second
one models predators’ death.

It is important to remark on the universality of behavior in this class of
systems: similar wave patterns to those found in the BZ reaction (see below
Figs. 4 and 7) or the PP model appear also in many other reaction diffusion
systems having the same dynamical behavior.

Let us start with the case in which the Fi’s give rise to an oscillatory
dynamics, inducing a periodic evolution of the Θi fields in time. A front
may develop, for example, if the oscillation of any part of the system is
perturbed, and traveling wave trains move through the system. In the context
of predator-prey systems, these periodic traveling waves can be originated
by the invasion of a predator population into the prey population. In one
dimension, wave train solutions are of the form

θi(x, t) = Θi(ωt− kx), (24)

where ω is the frequency, k the wavenumber, and Θi is a periodic function of
the phase. Therefore the advancing front leaves behind it a spatially periodic
pattern. In two spatial dimensions, these wave trains are concentric circles,
referred to as target patterns (see Fig. 4 for an example appearing in the BZ
reaction).

Other interesting behaviors appear in excitable systems, which are charac-
terized by the presence of activator and inhibitor components. The activator
has a catalytic effect both on itself (autocatalysis) and on the inhibitor which,
in turn, depletes the activator production. At the end, the system has a stable
fixed point as the only attractor for the dynamics. Examples of excitable sy-
stems may be found in semiconductor lasers with optical feedback [20], neural
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Fig. 4. Target patterns for the BZ reaction

communications [3], and populations dynamics [3]. Moreover, for some values
of the parameters, the BZ reaction and PP models also behave as excitable
systems.

The main feature of this kind of systems is the way in which they res-
pond to perturbations. Typically there exists a threshold value such that if
the perturbation goes above it the system reaches the fixed point only after
a long excursion in the phase space. This behavior usually appears when the
activator has a temporal response much faster than the inhibitor, so that
it takes some time before stopping the growth of the activator. The thres-
hold property is characteristic of cubic nonlinearities in the reaction term, as
exemplified by the Fitzhugh-Nagumo (FN) equations,

∂u

∂t
= u(a− u)(u− 1) − v +D

∂2u

∂x2 ,

∂v

∂t
= bu− γv ,

(25)

originally introduced as a mathematical model for neural activity [21], where
u is the activator, v the inhibitor, and a, b, γ are positive parameters.

The threshold property can be understood by studying the nullclines of
the system (Fig. 5), which are obtained by equating to zero the rhs of (25)
with D=0. If the value of u is smaller than the threshold a, u quickly returns
to the origin (the stable fixed point) and the spatial perturbation dies out.
On the contrary, if the perturbation is larger than the threshold, the fixed
point is reached after a large excursion in both u and v passing through the
points 0BCD0.
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Fig. 5. Phase trajectories for u and v depending on whether the perturbation is
larger than or smaller than the threshold a. Solid lines are the nullclines
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Fig. 6. Pulse-like front solution for a one-dimensional excitable medium

The propagation of the excitation through neighboring points, coupled
diffusively, generates traveling pulses as the one shown in Fig. 6. In two
dimensions we have circular propagating waves. Pulse waves have been shown
to exist in generic excitable models, but the values of the propagation velocity
and the shape of the pulse depend on the specific reaction term. In particular
for the FN system, one can show [3] that, in the limit of small b and γ,
the wave speed is given by c =

√
D/2(1 − 2a). In two dimensions, when

a propagating pulse is broken at a point, it begins to rotate around the
ends, producing spiral waves (see Fig. 7 for a typical example in the BZ
reaction). There are also many other relevant occurrences of spiral waves in
natural systems. Just to name a few, let us mention fibrillating hearts, where
small regions contract independently and the spreading through the cortex
of damaged brains [3].
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Fig. 7. Spiral waves observed in the BZ reaction

However, the phenomenology can be much more complicated. For exam-
ple, target patterns can also be formed in an extended excitable medium if the
pulses are emitted periodically, and spiral waves can be formed by breaking
target waves by stirring the medium, or by noise-induced effects.

Let us now briefly comment the case of chaotic reaction dynamics (see
[4,5] for more details). An interesting case, widely observed in predator-prey
systems, appears when periodic wave trains become highly disordered, loosing
their periodicity. In this case, very irregular spatial patterns appear behind
the front. Moreover, spiral waves may become highly disordered and organize
themselves in chaotic sets that continuously form and decay (the so-called
transition to spatio-temporal chaos).

3.2 Advection Reaction Diffusion Systems

Reaction diffusion processes taking place in moving media such as fluids are
of considerable importance, e.g. in combustion, atmospheric chemistry, and
ecological problems. As we saw in Chap. 8, even passive scalars, substances
which are simply transported by the flow, display a very complex behavior
both in laminar and turbulent flows. When reaction is taken into account
the problem becomes even more complex. In fact the heat release associated
with chemical reactions will affect the velocity field, and transport is not
passive any more. However, even when the feedback of the advected scalar
on the moving medium can be neglected (like in certain aqueous autocatalytic
reactions), the dynamics of the reacting species is strongly complicated by
the presence of the velocity field.
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Similarly to passive scalars, one can adopt two complementary points of
view. A first possibility is to consider particles modeling reagents (or indivi-
duals, in ecological problems), which move under the effect of a velocity field
and thermal noise (diffusion), and reacting when they come into contact –
this is the Lagrangian viewpoint (see also Chap. 8). Alternatively, adopting
an Eulerian viewpoint (see also Chap. 7), one considers a field of concen-
tration which evolves according to the advection reaction diffusion (ARD)
equation, which for one species reads

∂θ

∂t
+ u · ∇θ = D∇2θ + F (θ), (26)

where u is the velocity field; we wrote (26) for an incompressible flow (∇·u=
0) for simplicity. In the most general formulation of the problem, one also
has to consider the Navier-Stokes equation for u with a term accounting for
the feedback of θ on the velocity field. The two points of view can be related
through an elegant mathematical formulation in terms of the Feynman-Kac
formula [22].

Chemical Processes in Fluid Flows

Among the many chemical reactions that take place in fluids, one of the most
important is combustion [14]. The general problem is very difficult due to the
presence of many components which react in a complicated way and which
modify the flow via heat release, thus enhancing the complexity of the flow
generating turbulence. Turbulence itself plays an important role in increasing
the mixing of reagents (see Chap. 8) and therefore improving the efficiency of
combustion processes [16]. For example, in the spark-ignition engine, fuel and
oxidizer are firstly mixed by turbulence before the spark ignites the mixture.

For a complete mathematical formulation of the general problem, one has
to consider N reacting species θi which evolve according to (26)

∂θi

∂t
+ u · ∇θi = Di∇2θi + Fi(θ1, . . . , θN , T ), (27)

with their own diffusivity constant, Di, and reaction kinetics, Fi, that de-
pends on the temperature, T . The temperature itself is transported by the
flow and modifies it through buoyancy, so that the Navier-Stokes equation
for the velocity field with back-reaction should be considered. Usually the
dependence of Fi on the temperature is of the Arrhenius type (17) [15]. It is
obvious that this set of equations is too complicated for us to give a satisfac-
tory non-technical treatment of the problem.

However, some new phenomena which arise because of the presence of the
advecting velocity field can be appreciated, even considering a single reacting
species and neglecting the back-reaction on the fluid, i.e. remaining at the
level of the ARD equation (26). For the sake of simplicity, let us consider
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Fig. 8. Front propagation in a pipe-like geometry in two-dimension. The boundary
conditions are θ(−∞, y)=1 and θ(+∞, y)=0. The grey scale indicates a concentra-
tion going from fresh material (θ = 0, white) to burnt material (θ = 1, black). The
advecting velocity field is a cellular flow, ux =U sinx cos y and uy =−U sin y cosx,
where U is the stirring intensity. The upper image is for low Da, i.e. slow chemi-
stry; note the thickness of the reaction zone, ξ, which extends over many velocity
characteristic length scales, L (here the transversal length). The lower image is for
high Da, fast reaction, here ξ � L

(26) in a pipe-like geometry with a given velocity field (see Fig. 8). For our
illustrative purpose, the velocity field is left unspecified. We only assume that
it is characterized by its intensity, U (the root mean square velocity) and its
typical length scale, L (the correlation length, or in the pipe-problem the
transverse length). In addition, let us assume that F (θ) is of the FKPP-type
with θ=0 and θ=1 representing, the unstable (unburnt) and stable (burnt)
states, respectively. Let us rewrite F (θ)=f(θ)/τ where τ is the typical tem-
poral scale of the chemical kinetics, and f is the rescaled production term
with f ′(0)=1. Suppose that at the initial time on the left there is burnt ma-
terial and the rest of the pipe is filled with fresh unburnt reagent. This can
be seen as an extremely simplified burning process or chemical reaction. As
time advances the front separating burnt from unburnt material will advance
from left to right with a speed vf . Now the question is how the front speed
and shape will be modified by the presence of the velocity field, u.

In a fluid at rest, u = 0, we saw that the propagation speed is given by
v0 = 2

√
D/τ (9), the laminar front speed in combustion jargon. Moreover,

the thickness of the region where the reaction takes place, ξ, is roughly given
by ξ ∼ √

Dτ (see (13)). In a moving fluid it is natural to expect that the
front will propagate with an average (turbulent) speed vf greater than v0.
The turbulent front speed vf will be the result of the interplay among the
flow characteristics, L and U , the diffusivity D, and the chemical time scale
τ . The analysis can be simplified by introducing two non-dimensional num-



204 M. Cencini, C. Lopez, and D. Vergni

bers: the Damköhler number Da=L/(Uτ), the ratio of advective to reactive
time scales, and the Peclet number Pe=UL/D, the ratio of diffusive to ad-
vective time scales. Usually one is interested in the limit of high Pe number,
when advection is stronger than diffusion. The front speed is expected to be
expressed as vf =v0φ(Da,Pe) which is in general larger than v0 [22].

The study of the detailed dependence of vf on Da and Pe, φ(Da,Pe),
is non-trivial. However, some limiting cases can be identified. A particularly
simple case is when the reaction is very slow, Da 	 1. In this regime the
thickness of the reaction zone is much larger than the typical velocity length
scale, ξ � L (see Fig. 8). On length scales larger than L the transport pro-
perties of an advected scalar (or of particles in the Lagrangian viewpoint) are
known to be well described by an effective diffusion constant, Deff , usually
much larger than the molecular diffusivity,D (see [23] and references therein).
As a consequence, the reaction zone behaves as if the diffusion coefficient is
Deff . In other words, on scales much larger than L (26) reduces to (1) with
D → Deff . So that the theory discussed in Sect. 2 applies [22,24] with

vf ≈ 2
√
Deff/τ . (28)

Apart from slow biological reactions, or when the stirring by the velocity
field is extremely intense, most of reactions of interest have time scales com-
parable or faster than the advection time, L/U (fast reaction). Therefore the
previous result cannot be applied. However, it is interesting to note that the
rhs of (28) is a rigorous upper bound to the turbulent front speed vf [22].
A possible approach in the case of fast reactions is to renormalize both the
diffusion constant and the chemical time scales. But while the computation
of the renormalized diffusion coefficient is based on powerful, well-established
mathematical methods [23], the renormalization of τ can only be approached
phenomenologically [22].

Another limit is when D, τ → 0, while remaining the ratio D/τ constant;
here, the reaction zone thickness ξ ∼ √

Dτ shrinks to zero, while the laminar
front speed v0 stays finite). In this case, the ARD equation reduces to the
so-called G-equation [16]

∂G

∂t
+ u · ∇G = v0|∇G| . (29)

The iso-scalar surface (line in two dimension), say G=0, represents the front
position. Equation (29) has a simple geometrical interpretation: in the ab-
sence of stirring (u=0) the front evolves according to the Huygens principle,
i.e., a point x belonging to the front moves with a velocity v(x) = v0n̂(x),
n̂(x) being the perpendicular direction to the front surface in x. The effect
of the velocity field is to wrinkle the front, increasing its area and thereby
its speed [16]. Indeed the front speed in this limit is linked to the amount
of material which is burnt per unit time, which increases as the front area
increases. Assuming a velocity field with a turbulent spectrum, Yakhot [25]
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proposed that at large flow intensities (U � v0) Vf ∝ U/
√

lnU . We do not
know whether this prediction is correct or not, although the fact that vf has
an almost linear behavior with U (here corrected by

√
lnU) seems to be a

generic feature in laboratory and numerical experiments up to moderately
high intensities.

Plankton Patchiness

The large importance of plankton distributions in the sea must not be unde-
restimated. They are at the lowest level of the ocean food chain, and among
the most important ingredients for understanding the interchange of CO2
between the atmosphere and the oceans and, consequently, the phenomenon
of global warming [26].

A characteristic that is well known since the earliest in situ observations,
recently verified by satellite remote sensing and detailed numerical simula-
tions [27], is plankton patchiness, i.e., the inhomogeneity of plankton spatial
distributions. These analyses identify filaments, irregular patches, sharp gra-
dients, and other complex structures involving a wide range of spatial scales
in the concentration patterns, which typically extend from medium scales
(∼ 10 km) to very large ones (∼ 1000 km), associated with the major ocean
currents and gyres (Fig. 9).

Traditionally, patchiness has been variously attributed to the interplay
of diffusion and biological growth, oceanic turbulence, diffusive Turing-like
instabilities, and nutrient or biological inhomogeneities [28]. Advection by
unsteady fluid flows and predator-prey interactions are only recently emer-
ging as two key ingredients able to reproduce the main qualitative features
of plankton patchiness [18]. Therefore, the proper mathematical framework
for this problem is that of advection reaction diffusion systems with many
components (27).

The reaction term usually takes into account three different trophic levels
and their interactions: nutrients (N), phytoplankton (P ) and zooplankton
(Z). The nutrients are inorganic materials dissolved in water that can be
assimilated by the phytoplankton organisms; the zooplankton grazes on the
latter. The interactions among N , P and Z are schematically sketched in
Fig. 10. As one can see they are of the predator-prey type with competition
for resources and mortality. Moreover, the uptake of nutrients by phytoplank-
ton, and the grazing of these by the zooplankton are also taken into account.
Regarding the advection by oceanic flows, the mechanism which is now emer-
ging as a key feature in explaining the observed filament-like structures of
the concentration patterns is chaotic advection [29], i.e. the presence of hig-
hly chaotic trajectories of the fluid particles even in relatively simple Eulerian
flows. In fact the continuous stretching and folding of fluid elements induced
by the flow is considered to be one of the basic ingredients for the generation
of patchiness, see [27] for a recent review.
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Fig. 9. Satellite image of phytoplankton pigment (chlorophyll) concentration in
Western Europe (Courtesy by Marine Environment Unit, image from SeaWiFS
Images Archive: http://www.me.sai.jrc.it)
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Fig. 10. The processes in the NPZ models
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Here we limit the discussion to a simple model [30] constituted by three
trophic levels where, instead of considering explicitly the nutrients, we in-
troduce the carrying capacity, C, defined as the maximum phytoplankton
content that a parcel of water can support in the absence of grazing. Consi-
dering a relaxational dynamics for C, and assuming equal diffusivities (which
is reasonable because mixing in plankton communities is largely due to sea-
water turbulence), the model is

∂C

∂t
+ u · ∇C = α(C − C0(x)) +D∇2C ,

∂P

∂t
+ u · ∇P = P (1 − P/C) +D∇2P ,

∂Z

∂t
+ u · ∇Z = PZ − δZ2 +D∇2Z ,

(30)

where α describes the relaxation of C onto an imposed spatially dependent
carrying capacity, C0(x) (see [30] for more details), and δ is the Z mortality.
The velocity field u(x, t) is incompressible and it is assumed to give rise
to chaotic advection, which implies that the separation between two fluid
particles, |δx(t)|, initially close (|δx(0)| 	 1) typically diverges in time at a
rate given by the Lyapunov exponent of the flow λF > 0,

|δx(t)| ∝ |δx(0)|eλF t . (31)

In the absence of the flow and with D=0, the dynamics is attracted by the
stable fixed point of (30): C∗ = C0(x), P ∗ = C0δ/(δ+C0), and Z∗ = P ∗/δ.
Thus the chemical Lyapunov exponent5 λC is negative. This simple model
displays an interesting transition depending on the value of λF and λC . If
|λC | > λF the plankton distribution is smooth, while if |λC | < λF , i.e. when
the flow is enough chaotic to overcome the stability of plankton dynamics,
the asymptotic spatial distribution of plankton has fractal properties.

Another remarkable feature of this model is its ability to reproduce a
well-known experimental fact related to the behavior of the power spectrum,
Γ (k) (k is the wavenumber), of the species distributions. Specifically, analysis
of transects taken by oceanographic ships have shown that the power spectra
of zooplankton and phytoplankton have a power law behavior characterized
by different scaling exponents [18]: ΓP (k) ∝ k−βP and ΓZ(k) ∝ k−βZ , with
βP �= βZ , indicating the different distributions of P and Z. Furthermore,
βP and βZ seem to be different from 1, the scaling exponent expected for
passive scalars (such as temperature and salinity). Therefore, P , Z and the
temperature field are distributed in a very different manner, Z being much
more irregularly distributed than P , i.e., 1 < βP < βZ [18,30]. In the model
(30) the power spectrum scaling exponents can be computed in terms of
5 That is the Lyapunov exponent of the dynamical systems obtained by (30) with

u=0 and D=0.
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the Lyapunov exponents λF and λC as βP = βZ = 1+2|λC |/λF < 1, which
partially reproduces the observations. However, a slightly more sophisticated
model has obtained the result βP < βZ (see article on page 470 of [27]), which
is closer to observations.

The complete characterization of plankton patchiness requires the intro-
duction of more refined observables than the power spectrum. For instance,
one can define the qth structure functions of, say, phytoplankton, as

Sq(δr) = 〈|P (x + δx, t) − P (x, t)|q〉, (32)

where the bracket represents averaging over locations x, δr = |δx| and q
is a positive number. Interestingly, as observed in turbulence and passive
scalars (see Chaps. 7, 8), in the limit δr → 0, structure functions have a
power law behavior given by Sq ∝ δrζq . Moreover, the exponents ζq display a
non-trivial dependence on q, namely they deviate from the linear dimensional
estimation ζq = q(1−β)/2 (where β is the power spectrum scaling exponent).
These deviations are the signature of the multifractal behavior of plankton
distribution. Remarkably, multifractality naturally arises in the framework
of models like (30) due to the fluctuations of finite-time Lyapunov exponents
(see [30] for a detailed discussion on this point).

The most important lesson one can learn from this simple model is that
from the interplay of a smooth flow, which accounts for the physics, and a
(simplified) stable interacting dynamics, the biology, one can have a very irre-
gular (multifractal) spatial distribution of population concentrations. Moreo-
ver, the relevant quantities describing the inhomogeneities of these distribu-
tions, such as the power spectrum or structure function scaling exponents,
can be expressed in terms of the Lyapunov exponents that characterize, se-
parately, the dynamics of the flow and of the plankton populations.
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Abstract. The first example of a self-similar random process, the Wiener pro-
cess, appeared long ago. An abstract geometrical approach to such processes was
initiated by Kolmogorov and pursued by the school of Russian probabilists. An ob-
vious generalization, that is processes dependent on a multidimensional argument
(usually called random fields) were introduced by Kolmogorov in his phenomeno-
logical theory of turbulence, a main contribution to physics.

Self-similar random fields reappeared independently thirty years ago in an ent-
irely different context: the area of critical phenomena in phase transitions, with
interesting developments. The new approach to the subject came through the com-
bination of the physicist renormalization group with an extension of the concept
of stable distribution, a class of distributions that plays an important role in limit
theorems for independent random variables.

The present paper is a short guide through these topics.

1 Historical Sketch

The idea of self-similarity of physical phenomena plays a fundamental role
in fluid mechanics: for example the stationary plane motions in a viscous
incompressible fluid of geometrically similar objects, that is having the same
shape, but different sizes, depend only on two dimensionless quantities, the
angle formed by the object with the direction of motion, and the Reynolds
number. This allows the scientist to reduce the study of the motion of a
very large body to experiments in a laboratory by acting on the values of
the velocity, the fluid density, the viscosity and the size in such a way as to
keep the Reynolds number constant. For a rich exemplification of self-similar
situations in fluid dynamics we refer the reader to the interesting book by
Sedov [1].

In turbulence, which is part of fluid dynamics, stochasticity appears and
statistical averages seem to depend, over certain spatial scales, only on special
combinations of the physical quantities. The notion of self-similar random
field seems natural in this context and was introduced by Kolmogorov in a
rather informal way as a phenomenological tool. However, earlier, he had laid
the basis for a mathematical theory.

In two short papers published in the Dok. Akad. Nauk SSSR in 1940
[2,3] Kolmogorov initiated the study of classes of stochastic processes with
invariance properties under certain transformations. In particular in [3] he
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introduced a class of processes homogeneous under a rescaling of the inde-
pendent variable. One of them, characterized by a special value of the degree
of homogeneity, he called the Wiener spiral. The approach in [2,3] is geome-
trical in terms of curves in Hilbert space and the probabilistic interpretation
is introduced as a special realization. Later it was generalized and developed
in a 1955 article by Pinsker [4].

One year later, his famous articles on the theory of turbulence [5–7] ap-
peared where random fields, i.e. stochastic processes depending on a multidi-
mensional space variable, and possessing scaling properties, played a crucial
role. A systematic analysis of the processes involved in Kolmogorov theory
was developed in 1957 in a paper by A.M. Yaglom [8]. It is worth noting
that in his physical theory Kolmogorov did not quote his mathematical pa-
pers. May be because in absence of a theory for the origin of stochasticity in
developed turbulence he considered these fields only as descriptive concepts
without a mathematical foundation on more primitive notions.

In 1962 Lamperti [9], apparently unaware of the work of the Russians,
introduced essentially the same processes as [3]. He called these processes
semi-stable, with the aim of generalizing the idea of stable distribution, a class
of probability distributions which have remarkable scaling properties [10].

Self-similar random fields occupy a central place in the modern theory of
the critical point of phase transitions. Here the situation is very different from
turbulence. Randomness is introduced at the microscopic level by Gibbs pro-
bability distributions on which statistical mechanics is founded. We deal with
a well defined problem which consists in understanding how the non scaling
invariant original Gibbs distribution becomes self-similar over large distances
at the critical point. The qualitative explanation is that at the critical point
a thermodynamic system develops statistical correlations of infinite range so
that the nature of atomic constituents and the typical interatomic distances
become irrelevant. The physicist approach is via the so called renormalization
group (RG) which, in one of its formulations, has a probabilistic interpreta-
tion in terms of limit theorems for random fields. In perspective one can see
in this formulation the melting of different ideas originated earlier in different
contexts.

The RG theory of the critical point leads to the study of self-similar
random fields which are obtained as limits of stationary random fields. A
characteristic feature of the critical point is the non-integrability of the corre-
lation function, a property that probabilistically denotes a strong dependence
among the variables.

In the early sixties Rosenblatt [11] constructed a stationary asymptoti-
cally self-similar process of discrete argument, which, although not connec-
ted with problems in physics, later provided an interesting example in the
probabilistic interpretation of the renormalization group approach to phase
transitions.

The probabilistic version of the RG was developed independently of Kol-
mogorov’s and Lamperti’s work and the connections with its ancestors were
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understood afterwards. The first informal definition of translation invariant,
i.e. stationary, self similar random field, was given in [12] and formalized
in [13]. One year later a similar definition was given independently in [14].
These papers were concerned with systems on a lattice. The extension to the
continuous case and a systematic analysis from the standpoint of generalized
random fields was developed by Dobrushin [16,17].

In the following we shall briefly review the mathematical concepts involved
in the story outlined above emphasizing the shift in point of view which has
taken place with the renormalization group.

2 The Wiener Spiral and Related Processes

In [2] probability is not even mentioned: the title of the note is “Curves in
Hilbert Space which are Invariant under a One-parameter Group of Motions”.
In [3] the probabilistic interpretation of the Hilbert space structure is defined
via the expectation value, that is, given a random variable ξ, the square
of its norm as an element of the Hilbert space H is E(|ξ|2) and the scalar
product between two real variables < ξ, η >= E(ξη). The random processes
considered ξt are curves in H generated as follows

ξt = at + Utξ = Ktξ (1)

where at, ξ ∈ H, Ut is a unitary group andKt+s = KtKs which implies at+s =
at + Utas = as + Usat with a0 = 0. Clearly if we take at = 0 the processes
generated are stationary in the wide sense while for at �= 0 their increments
ξt+h − ξt have this property. A process is stationary in the wide sense if the
expectations E(ξt), E(|ξt|2) do not depend on t and E(ξtξs) depends only on
t − s. It is a simple calculation to verify that E([ξt1+h1 − ξt1 ][ξt2+h2 − ξt2 ])
depends only on t2 − t1 for any fixed h1, h2.

A similarity transformation in H is defined by the operator

Sξ = ā+ qŪξ (2)

where ā is again an element of H, q a real number and Ū a unitary transfor-
mation.

The class of self-similar random processes is defined by the property

ξλt = Sλξt (3)

for all t, where Sλ is a similarity transformation.
A first theorem proved by Kolmogorov shows that the expectation of the

product of two increments at the same time t of a self-similar process has the
form

E([ξt+h1 − ξt][ξt+h2 − ξt]) = c[|h1|α + |h2|α − |h1 − h2|α] (4)
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where c is a positive constant and 0 ≤ α ≤ 2. The scaling factor qλ in Sλ is
therefore λα/2. By definition the Wiener spiral corresponds to α = 1. This
terminology stems from the following definition: a curve x(t) in a vector space
is a spiral if the distance ||x(t) − x(s)|| depends only on |t− s|.

A second theorem proves that a necessary and sufficient condition for a
self-similar process to be a Wiener spiral is the vanishing of the correlation
between two increments referring to non overlapping intervals of time.

The Wiener process is a special case of the Wiener spiral. About spirals
and geometry of the Wiener process see also [18].

In [9] Lamperti considers the following situation: given a process ηt sup-
pose that the limit exists in the sense of convergence of finite dimensional
joint distributions

lim
λ→∞

ηλt + g(λ)
f(λ)

= ξt (5)

for an appropriate choice of g(λ) and f(λ). Then he proves that ξt is a
self-similar process with f(λ) = λα/2L(λ) and g(λ) = ω(λ)λα/2L(λ). The
function ω(λ) has a limit when λ tends to infinity and L(λ) is slowly varying.

An important example of this kind is provided by the Donsker invariance
principle [19] which states the following: consider an infinite sequence of inde-
pendent Gaussian variables ξi of unit variance and form the sums Sk =

∑k
1 ξi.

For each integer n construct the process

Xn
t =

1√
n

(S[nt] + (nt− [nt])ξ[nt]+1) (6)

where [nt] is the integer part. Then Xn
t converges in distribution as n → ∞

to the Wiener process.
This type of limit theorems for processes is akin, but much simpler, to

the situations we shall consider later in connection with the renormalization
group.

The objects appearing in Kolmogorov theory of turbulence are random
fields. The term random field is used when a process depends on a multidi-
mensional variable like the coordinates of a point in space or space-time. A
homogeneous field is the analog of a stationary process: this means that the
joint probability distributions are invariant under translations of the argu-
ments. A locally homogeneous field is the analog of a process with stationary
increments. The increments are defined by ξ(x+ h) − ξ(x). In [5] the locally
homogeneous random field is the velocity field but the quantities of interest
are the increments which in certain regions of their arguments are assumed to
satisfy self-similarity conditions. It is easy to show that self-similar stationary
processes or fields cannot exist as ordinary functions and must be interpre-
ted as distributions, that is linear functionals on an appropriate space of test
functions. The argument is as follows. The probability distributions of ξt and
λ−α/2ξλt cannot coincide unless ξt = ξ0 = 0. In fact stationarity implies that
we can replace ξλt with ξ0 from which the statement is obvious.
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This difficulty does not arise if we consider an ordinary process as a ge-
neralised process and choose properly the test functions. If ξt is viewed as a
generalised process only expressions of the form

ξ(φ) =
∫
ξtφ(t)dt (7)

are considered where we take φ of compact support. Then by translational
invariance

∫
λ−α/2ξλtφ(t)dt is equivalent to

∫
λ−α/2ξ0φ(t)dt which is zero if∫

φ(t)dt = 0. Therefore self-similarity can be implemented in a space of test
functions of vanishing integral. To see the effect of smearing a non stationary
self similar process let us consider the case of the Wiener process wt. Our
test functions are of compact support on [0,∞) with vanishing integral. Let
us consider the correlation function

E(w(φ)w(ψ)) =
∫ ∞

0
dt

∫ ∞

0
dt′ min(t, t′)φ(t)ψ(t′) (8)

A simple calculation shows that this correlation function is invariant un-
der forward time translations. Therefore the process w(φ), being gaussian
and therefore determined by its correlation function, is invariant under these
translations.

The self-similar random fields considered in turbulence can be viewed as
generalised processes in a space of test functions with vanishing integral [8].

3 The Renormalization Group: General Ideas

Statistical mechanics describes macroscopic systems in terms of an underlying
microscopic structure whose configurations are the arguments of a probability
distribution, an ensemble in the terminology of physicists. Therefore statisti-
cal mechanics deals with random fields depending on a discrete argument for
systems on a lattice, or a continuous argument, e.g. in the case of a classical
gas.

When a system approaches a critical point large islands of a new phase
appear so that correlations among the microscopic constituents extend over
macroscopic distances. One characterizes this situations by introducing a cor-
relation length which measures the extension of such correlations. At the cri-
tical point this length becomes infinite and typically correlations decay with
a non-integrable power law as opposed to an exponential decrease away from
criticality. The exponents in these power laws exhibit a remarkable degree
of universality because the same exponents appear for physically different
systems such as a gas and a ferromagnet.

The renormalization group (RG) is both a way of thinking about critical
phenomena and a calculational tool. It was introduced to understand the two
aspects mentioned above, i.e. the appearance of power laws and the univer-
sality of the exponents. There exist two rather different versions of RG both
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originated in quantum field theory: one, called the multiplicative RG or the
Green’s function RG, is an exact generalized scaling relation satisfied by the
Green’s functions in quantum field theory and by the correlation functions
in statistical mechanics; the second, called Wilson’s or sometimes Kadanoff-
Wilson’s RG [20], is based on a progressive elimination of the degrees of
freedom of the system and properly speaking is a semigroup. The multipli-
cative RG was the first to be applied in the theory of the critical point [21]
but it is the second one which has an interesting probabilistic interpretation.
However the two are structurally connected as we shall illustrate later.

The qualitative argument mentioned in Sect. 1 to figure out why scaling
properties should be expected at the critical point was put forward by Kada-
noff [22]. If correlations extend over macroscopic distances it must be irrele-
vant whether we consider our system constituted by the original microscopic
objects or by blocks containing a large number of constituents. In the limit
when the correlations extend to infinity the size of the blocks should not mat-
ter and this leads immediately to homogeneity properties for the correlation
functions and the thermodynamic potentials. A mathematical implementa-
tion of the idea came later with the application of Wilson’s renormalization
transformation to criticality. Technically Wilson’s transformation does not
involve blocks and is defined in Fourier space but conceptually represents a
way of realizing Kadanoff’s point of view. The probabilistic version that we
shall discuss on the other hand can be considered as the mathematically most
faithful implementation of Kadanoff’s idea.

Forming blocks of stochastic variables is common practice in probability,
the central limit theorem (CLT) being the prototype of such a way of rea-
soning. The crucial point is that when we sum many random variables we
have to normalize properly the sum in order to obtain a regular probability
distribution. In the case of the CLT, the correct normalization is the square
root of the number of variables. When we deal with processes which have
long range correlations and we substitute the original variables with sums, in
addition to the normalization it is necessary to redefine the unit of distance
in order to get in the limit of infinite blocks a reasonable stochastic process.
In summary the probabilistic RG consists of three steps: forming blocks, nor-
malizing them, redefining the unit of space distances. The infinite iteration
of this procedure, which is the same as taking the limit of infinite blocks, will
provide, if convergent, a self-similar random field.

Universality of critical exponents has a very natural interpretation. In
analogy to the case of the CLT there will be different random fields that under
the RG will converge to the same self-similar field. A physical universality
class will correspond to a subset of the domain of attraction of such a field.
In general we expect to be a subset because not all fields in the domain of
attraction will admit a physical interpretation.
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4 The Renormalization Group: A Probabilistic View

The theory of generalized random fields was initiated by Gelfand and a sy-
stematic exposition is contained in[23]. A generalized random field ξ(φ) is a
linear continuous functional over a space of test functions defined on a euc-
lidean space of d dimensions. A probability measure P can be specified by a
collection of one-dimensional distributions P ≡ {Pφ} defined by

Pφ(B) = P (ξ(φ) ∈ B) (9)

where B is a Borel set on the real line.
We define the scale transformation on test functions

(Sα,λφ)(x) = λ−dα/2−dφ(λ−1x) (10)

with 0 ≤ α ≤ 2. Sα,λ induces a transformation on probability measures
according to

(S∗
α,λP )φ = PSα,λφ (11)

A random field is called self-similar if

S∗
α,λP = P (12)

The transformation S∗
α,λ is also called a continuous renormalization trans-

formation. It is clear from (10) and (11) that for increasing λ we are inte-
grating the field over increasingly larger scales and blocks are defined by the
choice of the test functions. The transformation renormalizes, i.e. rescales,
the field by the factor λ−dα/2 and the effective unit of distance is fixed by λ.
These are the three steps discussed above. The critical point of a phase tran-
sition requires α > 1 meaning that the central limit theorem fails. A parallel
situation is encountered in euclidean quantum field theory where the inte-
resting limit is λ small. This is the small scale or ultraviolet limit in Fourier
space.

The randon fields appearing in the theory of the critical point or in quan-
tum field theory are not self-similar over all scales but only asymptotically at
large scales in the first case or at small scales in the second. As we remarked
previously, a new interesting chapter in the theory of limit theorems was ope-
ned in this way. The limit theorems involved refer to variables characterized
by a strong dependence and explore a domain complementary to the central
limit theorem.

The notion of self similar random field of discrete argument was introdu-
ced in statistical mechanical models to provide a proper mathematical setting
for the notion of RG a la Kadanoff-Wilson (block-spin transformation).

Let Zd be a lattice in d-dimensional space and j a generic point of Zd,
j = (j1, j2, ..., jd) with integer coordinates ji. We associate to each site a
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centered random variable ξj and define a new random field on a rescaled
lattice

ξn
j = (Rα,nξ)j = n−dα/2

∑

s∈V n
j

ξs, (13)

where

V n
j = {s : jkn− n/2 < sk ≤ jkn+ n/2} (14)

and 1 ≤ α < 2. The transformation (13) induces a transformation on the
corresponding probability measure according to

(R∗
α,nP )(A) = P ′(A) = P (R−1

α,nA), (15)

where A is a measurable set and R∗
α,n has the semi-group property

R∗
α,n1

R∗
α,n2

= R∗
α,n1+n2

. (16)

A measure P is called self-similar if

R∗
α,nP = P (17)

and the corresponding field is called a self-similar random field. Let us briefly
discuss the choice of the parameter α. It is natural to take 1 ≤ α < 2. In
fact α = 2 corresponds to the law of large numbers so that the block variable
(13) will tend for large n to zero in probability. The case α > 1 means that
we are considering random systems which fluctuate more than a collection
of independent variables and α = 1 corresponds to the CLT. Mathematically
the lower bound is not natural but it becomes so when we restrict ourselves
to the consideration of ferromagnetic-like systems.

A general theory of self similar random fields does not exist yet and pre-
sumably is very difficult. However Gaussian fields are completely specified by
their correlation function and self similar Gaussian fields can be constructed
explicitly [14,15]. It is expedient to represent the correlation function in terms
of its Fourier transform

E(ξiξj) =
∫ 1

0

d∏

1

dλkρ(λ1, . . . , λd)e2πi
∑

k λk(i−j)k . (18)

The prescription to construct ρ in such a way that the corresponding Gaus-
sian field satisfies (17) is as follows. Take a positive homogeneous function
f(λ1, ..., λd) with homogeneity exponent d(1 + α), that is

f(cλ1, ..., cλd) = cd(1+α)f(λ1, ..., λd) (19)

Next we construct a periodic function g(λ1, ..., λd) by taking an average over
the lattice Zd

g(λ1, ..., λd) =
∑

ik

1
f(λ1 + i1, . . . , λd + id)

. (20)
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If we define

ρ(λ1, . . . , λd) =
∏

k

|1 − e2πiλk |2g(λ1, . . . , λd), (21)

it is not difficult to see that the corresponding Gaussian measure satisfies
(17). The periodicity of ρ insures translational invariance.

For d = 1 there is only one, apart from a multiplicative constant, homo-
geneous function and one can show that the above construction exhausts all
possible Gaussian self similar distributions. For d > 1 it is not known whether
a similar conclusion holds.

The search of non-gaussian self-similar fields is considerably more difficult.
A reasonable question is whether such fields exist in the neighborhood of a
gaussian one. An approach to this problem has been developed by physicists,
the so called ε expansion, and in our context can be interpreted as follows.

Consider a small deformation PG(1+h) of a Gaussian self-similar measure
PG and apply to it R∗

α,n. It is easily seen that

R∗
α,nPGh = E(h|{ξn

j })R∗
α,nPG = E(h|{ξn

j })PG({ξn
j }). (22)

The conditional expectation on the right hand side of (22) will be called
the linearization of the RG at PG and we want to study its stability as a
linear operator. This means that we want to understand the properties of
the transformation R∗

α,n near its Gaussian fixed point. For this purpose we
have to find the eigenvectors and eigenvalues of E(h|{ξn

j }. These have been
calculated by Sinai. The eigenvectors are appropriate infinite dimensional
generalizations of Hermite polynomials Hk which are described in full detail
in [15]. They satisfy the eigenvalue equation

E(Hk|{ξn
j }) = n[k(α/2−1)+1]dHk({ξn

j }). (23)

We see immediately that H2 is always unstable while H4 becomes unstable
when α crosses from below the value 3/2. Bifurcation theory predicts, gene-
rically, an exchange of stability between two fixed points, so we should look
for the new one in the direction which has just become unstable. By intro-
ducing the parameter ε = α − 3/2, one can construct a non Gaussian fixed
point using ε as a perturbation parameter. The formal construction is ex-
plained in Sinai’s book [15] where one can also find a discussion of questions,
mostly still unsolved, arising in connection to this problem. Different rigorous
constructions of non Gaussian fixed points, for d = 4 and d = 3 have been
made recently by Brydges, Dimock and Hurd [24] and by Brydges, Mitter
and Scoppola [25].

There is a simple relationship between the renormalization group in the
discrete and in the continuous case. The idea is roughly the following. We say
that a space of test functions can be discretized if it contains the indicator
functions χb,c of the sets

Vb,c = {x; bk < xk ≤ ck} (24)
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We define the discretization of the random field ξ(φ) as

ξj = ξ(χj) (25)

where χj is the indicator function of

Vj = {x; jk − 1/2 < xk ≤ jk + 1/2} (26)

Conversely every discrete field can be thought as the discretization of some
continuous field. Indeed

ξ(φ) =
∑

j

ξj

∫

Vj

φ(x)dx (27)

defines a continuous random field whose discretization is ξj . It can be shown
that if two distributions are related in the continuous case by

P 2 = S∗
α,nP

1 (28)

their discretizations, i.e. the distributions of the discretized fields, that we
denote P̃ 1 and P̃ 2, are related by

P̃ 2 = R∗
α,nP̃

1 (29)

For more details we refer the mathematically inclined reader to [16].

5 A Property of Critical Self-Similar Random Fields

We have already characterized the critical point as a situation of strongly
dependent random variables due to the non integrability of the correlation
function and, as a consequence, of the failure of the CLT. We want to give
here a characterization which refers to the random field globally. This is based
on the concept of strong mixing introduced by Rosenblatt [11]. Consider the
cylinder sets in the product space of the variables ξi, that is the sets of the
form

{ξi1 ∈ A1, . . . , ξin ∈ An}, (30)

with i1, . . . , in ∈ Λ, Λ being an arbitrary finite region in Zd and with Ai

measurable sets in the space of the variables ξi. We denote with ΣΛ the
σ-algebra generated by such sets. We say that the variables ξi are weakly
dependent or that they are a strong mixing random field if the following
holds. Given two finite regions Λ1 and Λ2 separated by a distance

d(Λ1, Λ2) = min
i∈Λ1,j∈Λ2

|i− j|, (31)
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where |i− j| is for example the Euclidean distance, define

τ(Λ1, Λ2) = sup
A∈ΣΛ1 ,B∈ΣΛ2

|µ(A ∩B) − µ(A)µ(B)|. (32)

Then τ(Λ1, Λ2) → 0 when d(Λ1, Λ2) → ∞.
Intuitively the strong mixing idea is that one cannot compensate for the

weakening of the dependence of the variables due to an increase of their space
distance, by increasing the size of the sets.

This situation is typical when one has exponential decay of correlations.
This has been proved for a wide class of random fields such as ferromagnetic
non critical spin systems [26].

The situation is entirely different at the critical point where one expects
the correlations to decay as an inverse power of the distance. In this connec-
tion the following result has been proved in [27]: a ferromagnetic translational
invariant system with pair interactions and with correlation function

C(i) = E(ξ0ξi) − E(ξ0)E(ξi) (33)

such that

lim
L→∞

∑
L(sk−1)≤ik<L(sk+1) C(i)
∑

0≤ik<L C(i)
�= 0 (34)

for arbitrary sk, does not satisfy the strong mixing condition.
This theorem implies in particular that a critical 2-dimensional Ising mo-

del violates strong mixing. Therefore violation of strong mixing seems to pro-
vide a reasonable characterization of the type of strong dependence encounte-
red in critical phenomena. On the other hand, under very general conditions,
the one-block distribution satisfies the CLT [31] if strong mixing holds.

The first example of a non Gaussian self-similar process violating strong
mixing was constructed by Rosenblatt in [11]: we shall describe it in the last
section in connection with limit theorems and the failure of the CLT.

6 Multiplicative Structure

In this section we show that there is a natural multiplicative structure as-
sociated with transformations on probability distributions like those indu-
ced by the RG. This multiplicative structure is related to the properties of
conditional expectations [28]. Suppose we wish to evaluate the conditional
expectation

E(h|{ξn
j }), (35)

where the collection of block variables ξn
j indexed by j is given a fixed value.

Here h is a function of the individual spins ξi. It is an elementary property
of conditional expectations that

E(E(h|{ξn
j })|{ξnm

j }) = E(h|{ξnm
j }). (36)
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Let P be the probability distribution of the ξi and R∗
α,nP the distribution

obtained by applying to it the RG transformation, i.e. the distribution of
the block variables ξn

j . By specifying in (36) the distribution with respect to
which expectations are taken we can rewrite it as

ER∗
α,nP (EP (h|{ξn

j })|{ξnm
j }) = EP (h|{ξnm

j }). (37)

This is the basic equation of this section and we want to work out its conse-
quences. For this purpose we generalize the eigenvalue equation (23) to the
case in which the probability distribution is not a fixed point of the RG. In
analogy with the theory of dynamical systems we interpret the conditional
expectation as a linear transformation from the linear space tangent to P
to the linear space tangent to R∗

α,nP and we assume that in each of these

spaces there is a basis of vectors HP
k , H

R∗
α,nP

k connected by the following
generalized eigenvalue equation [29]

EP (HP
k |{ξn

j }) = λk(n, P )H
R∗

α,nP

k ({ξn
j }). (38)

Equation (37) implies that the λ’s must satisfy the relationship

λk(m,R∗
α,nP )λk(n, P ) = λk(mn,P ). (39)

From (38) and (39) we find that the λk are given by the following expectations

λk(n, P ) = E(H̄
R∗

α,nP

k ({ξn
j })HP

k ({ξj})), (40)

where H̄P
k are dual to HP

k according to the orthogonality relation∫
H̄P

k H
P
j dP = δkj . The λk are therefore special correlation functions.

If P is self-similar (39) implies that the λ’s are powers of n. An example
is provided by (23). In the theory of the critical point the corresponding
eigenvectors are called the scaling fields.

For those familiar with the multiplicative renormalization group of quan-
tum field theory and statistical mechanics we emphasize its structural simila-
rity with (39). The usual Green’s function RG is associated to a very simple
transformation of the probability distribution such that its form is unchanged
and only the values of its parameters are rescaled together with the random
variables; no block variable is introduced.

RG equations akin to the Green’s function multiplicative group have been
used in the study of turbulence in the scaling invariant Kolmogorov regime,
however their interpretation from first principles is not as obvious as in critical
phenomena [30].

7 Limit Theorems and Universality
of Critical Phenomena

The transformations S∗
α,λ and R∗

α,n can be considered as dynamical systems,
with continuous and discrete time respectively, in spaces of probability dis-
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tributions. We can therefore take the limits

lim
λ→∞

S∗
α,λP = P∞ (41)

and

lim
n→∞ R∗

α,nP = P∞ (42)

In both cases the limit distribution is self-similar according to our previous
definitions.

In the study of limit theorems the crucial question is to determine the
domain of attraction of a limit distribution, in our case the class of distri-
butions for which the above limits exist and is equal to a given P∞. From
the stand point of dynamical systems this is the stable manifold of P∞. Such
a calculation is in general extremely difficult: only the neighborhood of self-
similar Gaussian fields has been explored so far. In the example discussed in
Sect. 4 the stable manifold near PG for α < 3/2 consists of those probability
distributions whose projection on the second generalized Hermite polynomial
vanishes.

A more limited problem is whether we can describe the structure of the
limit one-block distributions appearing at the critical point beside the Gaus-
sian, that is the distributions of the single variable

ξn
j = (Rα,nξ)j = n−dα/2

∑

s∈V n
j

ξs, (43)

as n tends to ∞. It was shown in [27], building on previous results by Newman,
that for ferromagnetic systems the Fourier transform (characteristic function
in probabilistic language) of the limit distribution must be of the form

E(eitξ) = e−bt2
∏

j

(1 − t2/α2
j ) (44)

with
∑

j 1/α2
j < ∞. In the probabilistic literature these distributions belong

to a class called the D-class [32]. The Gaussian is the only infinitely divisi-
ble distribution belonging to this class. In the case of independent random
variables only infinitely divisible distributions can appear as limit distributi-
ons. These are characterized by the possibility of decomposing them as the
convolution of an arbitrary number of identical distributions.

Another case in which we are able to determine the structure of the one
block distribution is the Rosenblatt process. The construction of this process
is as follows. We start from a doubly infinite sequence ηk of independent
random variables normally distributed with unit variance. Let

ξi =
−1∑

−∞
|k|−a

ηk+i (45)
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with a to be chosen. ξi is a stationary Gaussian process characterised by a cor-
relation function E(ξiξj) which can be explicitely computed. Asymptotically
for large |i− j| we have

E(ξiξj) � |i− j|1−2a = |l|1−2a (46)

For 1/2 < a < 1 correlations decay at infinity but they are not integrable, i.e.∑
l |l|1−2a = ∞. The Gaussian process (45) is therefore critical and the varia-

bles are strongly dependent according to the definition of Sect. 5. Violation
of strong mixing follows from a theorem of Kolmogorov and Rozanov [31,33].
The limit distribution of the block variables ξn

j is Gaussian but the norma-
lization n3/2−a is anomalous. Consider now the new process, the Rosenblatt
process,

Ξi = ξ2i − E(ξ2i ) (47)

It is non Gaussian and it follows from (46) that its correlation function,
2(E(ξiξj))

2, is non integrable for a < 3/4. Therefore for 1/2 < a < 3/4 the
process (43) is also critical. The limit distribution of the one block variable can
be computed explicitely and turns out to be non Gaussian and non infinitely
divisible [11,31].

The principal merit of the probabilistic view of RG in my opinion resides in
unveiling the statistical nature of universality in critical phenomena. It is also
interesting that a new class of limit theorems has arisen from a very important
area in physics. The mathematics involved at this stage of development is
difficult and one should look for simplifications.

8 Conclusion

We conclude with the following natural question: do the self-similar fields
appearing in the theory of turbulence admit a deeper interpretation in terms
of an underlying more fundamental probability distribution? During the last
twenty five years there has been a considerable amount of work on the pos-
sible structure of the probability distributions relevant for the description of
turbulence. The input has come from the study of chaotic dynamical systems
and their invariant measures [34] but the problem is far from being solved.
An answer to the above question therefore is not available: it should however
provide an insight on the nature of the famous Kolmogorov exponents. For a
systematic dynamical systems approach to turbulence we refer the reader to
the book by Bohr, Jensen, Paladin and Vulpiani [35].

Finally some suggestions for further reading. Self-similar random fields,
often in connection with fractals, in the last decades have become pervasive of
many areas in the natural sciences. On these aspects we recommend the book
by Mandelbrot [36] and the collection of essays [37]. More recently self-similar
processes have found applications outside the natural sciences in particular
in finance for which we refer the reader to Mandelbrot [38] and to the article
by Bouchaud and Muzy in this volume.
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muzy@univ-corse.fr

Abstract. Kolmogorov’s pioneering work on turbulence is at the heart of most
modern concepts and models proposed to account for the so called “intermittency
phenomenon”, where quiet periods are interrupted by intense bursts of activity.
Recent findings in empirical finance suggest that these concepts, and more precisely
the framework of multiplicative cascades, might be relevant to model the main
statistical features of financial time series, in particular the intermittent nature of
the volatility.

1 Introduction

Kolmogorov is undoubtedly one of the most influential scientist of the 20th

century. His seminal ideas pervade many fields of science: probability and
statistics, dynamical systems, fluid mechanics and turbulence, front dynamics
and phase ordering, to list only a few. As often in science, genuinely innovative
ideas turn out to be of interest far beyond the particular context in which
they are developed. In that respect, his work on stochastic processes theory
and his penetrating contribution to the phenomenology of turbulence (see the
contributions by Biferale et al. and Celani et al. in this book) will probably
also be of fundamental importance in mathematical and empirical finance.
This will be the subject of the present tribute to a rare mathematician who
dared to confront himself with ‘dirty’ issues of the real world, and managed
to turn some of them into true scientific gems.

Financial time series represent an extremely rich and fascinating source of
questions. Here, a trace of human activity is recorded and stored in a quan-
titative way, sometimes over hundreds of years. These time series, perhaps
surprisingly, turn out to reveal a very rich and non trivial statistical structure,
which is to some degree universal across different assets (stocks, stock indices,
currencies, etc.), regions (U.S., European, Asian) and epochs. Statistical mo-
dels that describe these fluctuations have a long history, which dates back to
Bachelier’s “Brownian walk” model for speculative prices in 1900. Much more
sophisticated models are however needed to describe more faithfully empiri-
cal data. Many recent empirical studies have shown that financial data share

J.-P. Bouchaud and J.-F. Muzy, Financial Time Series: From Batchelier’s Random Walks to
Multifractal ‘Cascades’, Lect. Notes Phys. 636, 229–246 (2003)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2003



230 J.-P. Bouchaud and J.-F. Muzy

many statistical properties with the “intermittent” fluctuations of turbulent
velocity. In that respect, as we shall discuss below, the phenomenology of
turbulence as initiated by Kolmogorov, has provided new concepts and tools
to analyze market fluctuations and inspired a particularly elegant family of
models that accounts for the main observed statistical properties.

The paper is organized as follows: In Sect. 2, we give some basic defini-
tions and describe the main empirical features of financial time series. The
“intermittent” or “multifractal” nature of return fluctuations are discussed in
Sect. 3. We then introduce the notion of multiplicative cascade and compare
intermittency in turbulence, as described in Kolmogorov’s 1962 theory, with
multiscaling in financial data. In Sect. 4, we review a recently introduced
multifractal stochastic volatility model and its link with turbulent cascades.
Conclusions and prospects are provided in Sect. 5.

2 Universal Features of Return Time Series

The modeling of random fluctuations of asset prices is of primary importance
in finance, with many applications to risk control, derivative pricing and sy-
stematic trading. During the last decade, the availability of huge data sets of
high frequency time series has promoted intensive statistical studies that lead
to invalidate the classic and popular “Brownian walk” model, and to uncover
many new and robust features. In this section, we briefly review the main
statistical properties of asset prices which can be considered as universal, in
the sense that they are common across most markets and epochs [1,4].

Let us first define some basic notions. If one denotes p(t) the price of an
asset at time t, the return Rτ (t), at time t and scale τ is simply the relative
variation of the price from t to t+τ : Rτ (t) = [p(t+ τ) − p(t)] /p(t). Financial
mathematics mainly focuses on returns because only the relative variations
are meaningful for investors. Moreover, one can empirically check that return
time series have attractive statistical properties such that stationarity and
ergodicity: see, e.g. Fig. 2 (but see the discussion in [2]). If τ is small enough,
one has approximately: Rτ (t) � ln p(t + τ) − ln p(t). Let us therefore define
the continuous compound returns (hereafter simply denoted as returns) as
the variations of the logarithm of the price, x(t) = ln p(t):

rτ (t) = x(t+ τ) − x(t). (1)

Continuous compound returns are often preferred to simple returns because
returns at large time scale are obtained from small scale return by a simple
aggregation of small scale returns:

rnτ (t) =
n∑

i=1

rτ (ti) (2)

In Fig. 1 the daily “price” of Dow-Jones index over the last century is
shown. One can see that price fluctuations grow around a mean exponential
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Fig. 1. a Evolution of the Dow-Jones index price over the last century (1900-2003).
b Same data in a linear-log (base 10) representation. The full line is a parabolic fit,
which shows that the average annual return has actually increased with time

trend. In Fig. 1b, we plot the logarithmic price time series x(t) = ln p(t): In
this case, the fluctuations are seen to be stationary around a mean return
where the drift m is around 5% per year, but has slowly increased during the
whole century. Note that the current level of the Dow-Jones (after the “Inter-
net crash”) is, perhaps anecdotally, very close to its historical extrapolation.

The simplest “universal” feature of financial time series is the roughly
linear growth of the variance of the return fluctuations with time. More pre-
cisely, if mτ is the mean return at scale τ , the following property holds to a
good approximation:

〈(rτ (t) −mτ)2〉e � σ2τ, (3)

where 〈...〉e denotes the empirical average. This behaviour typically holds for
τ between a few tens of minutes and a few years, and is equivalent to the sta-
tement that relative price changes are, to a good approximation, uncorrelated
beyond a time scale on the order of tens of minutes (on liquid markets). Very
long time scales (beyond a few years) are difficult to investigate, in particu-
lar because the average drift itself m becomes time dependent. The absence
of linear correlations in financial time series is often related to the so-called
“market efficiency” according to which one cannot make anomalous profits
by predicting future price values.

The variance σ2 in the above equation is called, in financial economics,
the volatility. Volatility is the simplest quantity that measures the amplitude
of return fluctuations. It therefore quantifies the risk associated with some
given asset. Linear growth of the variance of the fluctuations with time is
typical of the Brownian motion, which was proposed as a model of return
fluctuations by Bachelier (in which case the price process is called geometric
Brownian motion). In the Bachelier model, returns are not only uncorrelated,
as mentioned above, but actually independent and identical Gaussian random
variables. However, this model completely fails to capture other statistical
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Fig. 2. a: Absolute value of the daily price returns for the Dow-Jones index over a
century (1900–2000), and zoom on different scales (1990–2000 and 1995). Note that
the volatility can remain high for a few years (like in the early 1930’s) or for a few
days. This volatility clustering can also be observed on high frequency (intra-day)
data. b Same plot for a Brownian random walk, which shows a featureless pattern
in this case

features of financial markets that even a rough analysis of empirical data
allows one to identify, at least qualitatively:

(i) The distribution of returns is in fact strongly non Gaussian and its shape
continuously depends on the return period τ : for τ large enough (aro-
und few months), one observes quasi-Gaussian distributions. For small
τ values, the return distributions have a strong kurtosis (see Fig. 3).
Several studies actually suggest that these distributions can be charac-
terized by Pareto (power-law) tails |δx|−1−µ with an exponent µ close to
3 even for liquid markets such as the US stock index, major currencies,
or interest rates [5,6,1,7,8]. In such a case, the kurtosis would diverge.
Emerging markets have even more extreme tails, with an exponent µ
that can be less than 2 – in which case the volatility is infinite.

(ii) Another striking feature is the intermittent and correlated nature of re-
turn amplitudes. At some given time period τ , the volatility is a quan-
tity that can be defined locally in various ways: the simplest ones being
the square return rτ (t)2 or the absolute return |rτ (t)|, or a local mo-
ving average of these quantities. The volatility signals are characterized
by self-similar outbursts (see Fig. 2) that are reminiscent of intermit-
tent variations of dissipation rate in fully developed turbulence [11].
The occurrence of such bursts are strongly correlated and high volati-
lity periods tend to persist in time. This feature is known as volatility
clustering [9,10,3,2]. This effect can be analyzed more quantitatively:
the temporal correlation function of the (e.g. daily) volatility can be fit
with an inverse power of the lag, with a rather small exponent in the
range 0.1 − 0.3 [10,12,13,22].
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Fig. 3. Continuous deformation of turbulent velocity increments and financial re-
turns distributions from small (top) to large (bottom) scales. a Standardized proba-
bility distribution functions of spatial velocity increments at different length scales
in a high Reynolds number wind tunnel turbulence experiment. The distributions
are plotted in logarithmic scale so that a parabola corresponds to a Gaussian dis-
tribution. b Standardized p.d.f. of S&P 500 index returns at different time scales
from few minutes to one month. Notice that because of sample size limitation, the
noise amplitude is larger than in turbulence

(iii) Past price changes and future volatilities are negatively correlated –
this is the so called leverage effect, which reflects the fact that markets
become more active after a price drop, and tend to calm down when
the price rises. This correlation is most visible on stock indices [14].
This leverage effect leads to an anomalous negative skewness in the
distribution of price changes as a function of time.

The most important message of these empirical studies is that prices be-
have very differently from simple geometric Brownian motion: extreme events
are much more probable, and interesting non linear correlations (volatility-
volatility and price-volatility) are observed. These “statistical anomalies” are
very important for a reliable estimation of financial risk and for quantitative
option pricing and hedging (see, e.g. [2]), for which one often requires an ac-
curate model that captures the statistical features of the return for different
time horizons τ . It is rather amazing to remark that empirical properties
(i), (ii) and (iii) are, to some extent, also observed on experimental velocity
data in fully developed turbulent flows (see Fig. 3). The framework of scaling
theory and multifractal analysis, initially proposed to characterize turbulent
signals [11], is therefore well suited to further characterize statistical pro-
perties of price changes over different time periods [25].
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3 From Multifractal Scaling to Cascade Processes

3.1 Multiscaling of Asset Returns

For geometric Brownian motion, the return distribution is identical (on the
scale of σ

√
τ) and Gaussian for all τ . As emphasized in the previous section,

the distribution of real returns, on the other hand, is not scale invariant, and
progressively deforms from a highly kurtic shape on short time scales to a
nearly Gaussian shape for larger time intervals (Fig. 3). Much the same phe-
nomenon is observed for the distribution of velocity differences in a turbulent
flow: small scale distributions depart from a Gaussian law while large scale
distributions are closer to a Gaussian law (Fig. 3). A way to characterize this
dependence is to study the unconditional absolute centered moments of the
price returns, defined as:

Mq(τ) = 〈|rτ (t) −mτ |q〉 . (4)

The question is whether these moments, when rescaled by the root mean
square [M2(τ)]q/2, depend in a non trivial way on τ . For a Brownian random
walk, these rescaled moments would be given by τ independent constants
corresponding to the moments of the Gaussian distribution. On the other
hand, multifractal (or multi-affine) process corresponds to the case when:

Mq(τ) � Aqτ
ζq (5)

where ζq �= q
2ζ2 is a non-linear function that can be shown to be concave

(ζ ′′(q) ≤ 0). This power-law behaviour holds in a scaling regime τ0 	 τ 	 T .
In this case, the rescaled moments scale as a (q-dependent) power-law of τ .
Such a behavior for price (or log-price) changes has indeed been reported by
many authors [22,27,29,30,28]. Figure 4 illustrates the empirical multifractal
analysis of the S&P 500 index return. As one can see in Fig. 4b, the scaling
behavior (5), corresponding to a linear dependence in a log-log representation
of the absolute moments versus the time scale τ , is well verified over some
range of time scales (typically 3 decades).

The multifractal nature of the index fluctuations can be verified in Fig. 4c,
where one sees that the moment ratios strongly depend on the scale τ . The
estimated ζq spectrum (Fig. 4d) has a concave shape that is well fitted by
the parabola: ζq = q(1/2 + λ2) − λ2q2/2 with λ2 � 0.03. The coefficient λ2

that quantifies the curvature of the ζq function is called, in the framework
of turbulence theory, the intermittency coefficient. The most natural way to
account for the multiscaling property (5) is through the notion of cascade
from coarse to fine scales.

3.2 The Cascade Picture

As previous noted for the geometric Brownian motion, the return probability
distributions at different time periods τ are Gaussian and thus differ only by
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Fig. 4. Multifractal scaling analysis of S&P 500 returns. a S&P 500 index price
series sampled at a 5 minutes rate. b First five absolute moments of the index (de-
fined in (5)) as a function of the time period τ in double logarithmic representation.
For each moment, a linear fit of the small scale behavior provides an estimate of ζq.
c Moment ratios Mq(τ)/M2(τ)q/2 in log-log representation. Such curves would be
flat for a geometric Brownian process. d ζq spectrum estimate versus q. Negative q
values are obtained using a wavelet method as defined in e.g. [15]. This function is
well fitted by a Kolmogorov log-normal spectrum (see text)
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their width that is proportional to
√
τ . If x(t) is Brownian, this property can

be written as

rτ (t) =law στε(t) (6)
σsτ = s1/2στ , (7)

where =law means that the two quantities have the same probability distribu-
tion. Here, ε(t) is a standardized Gaussian white noise and στ is the volatility
at scale τ . When going from some scale τ to the scale sτ , the return vola-
tility is simply multiplied by s1/2. The cascade model also assumes such a
multiplicative rule but the multiplicative factor is now a random variable.
The volatility itself becomes a random process στ (t):

rτ (t) =law στ (t)ε(t) (8)
σsτ (t) =law Wsστ (t), (9)

where the law for Ws depends only on the scale ratio s and is independent
of στ (t). Let T be some coarse time period and let s < 1. Then, by setting
Ws = eξs , and by iterating equation (9) n times, one obtains:

σsnT (t) =
law

WsnσT (t) =
law

e
∑n

i=1 ξsσT (t). (10)

Therefore, the logarithm of the volatility at some fixed scale τ = snT , can be
written as a sum of an arbitrarily large number n of independent, identically
distributed random variables. Mathematically, this means that the logarithm
of the volatility (and hence ξs, the logarithm of the “weights” Ws) belongs the
class of the so-called infinitely divisible distributions [16]. The simplest such
distribution (often invoked using the central limit theorem) is the Gaussian
law. In that case, the volatility is a log-normal random variable. As explained
in the next subsection, this is precisely the model introduced by Kolmogorov
in 1962 to account for intermittency turbulence. It can be proven that the
random cascade equations (8) and (9) directly lead to the deformation of
return probability distribution functions as observed in Fig. 3. Using the fact
that ξs is a Gaussian variable of mean µ ln(s) and variance λ2 ln(s), one can
compute the absolute moment of order q of the returns at scale τ = snT
(s < 1). One finds:

〈|rτ (t)|q〉 = Aq

( τ
T

)µq−λ2q2/2
, (11)

where Aq = 〈|rT (t)|q〉.
Using a simple multiplicative cascade, we have thus recovered the empi-

rical findings of previous sections. For log-normal random weights Ws, the
return process is multifractal with a spectrum of ζq that scales as a parabolic:
ζq = qµ−λ2q2/2 where the parameter µ is related to the mean of lnWs. The
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curvature λ2 (the intermittency coefficient) is then related to the variance of
lnWs and therefore to the variance of the log-volatility ln(στ ):

〈(lnστ (t))2〉 − 〈lnστ (t)〉2 = −λ2 ln(τ) + V0. (12)

The random character of lnWs is therefore directly related to the intermit-
tency of the returns.

3.3 Kolmogorov’s Legacy, Turbulence, and Finance

The first log-normal theory of intermittency was presented by Kolmogorov
in 1961 at the Colloque International de la Mécanique de la Turbulence in
Marseille and published in the famous Kolmogorov 1962 paper [18]. In this
work, motivated by a remark by Landau [11] closely related to another work
by Obhukov (a student of Kolmogorov) [19], Kolmorogov proposed a “refi-
nement” of his own 1941 dimensional theory of turbulence [17] in order to
account for the spatial fluctuations of the dissipation of energy at the origin of
intermittency. Kolmogorov-Obhukov intermittency theory of turbulence can
be summarized as follows [18,19]: If e�(x, t) is the local dissipation rate of
energy at scale �, and δ�v(x, t) the local longitudinal velocity field increment
at scale �, one assumes that ln(e�) is normally distributed, and that:

δ�v(x, t) =law e�(x, t)1/3�1/3ε(x, t) (13)
〈(ln(e�))2〉 − 〈ln(e�)〉2 = −λ2 ln(�) + V0 (14)

where ε(x, t) is a stochastic field that does not depend of the scale � nor on
e�. The similarity with (8), (9) and (12) is obvious. The (log-normal) mul-
tiscaling properties of turbulent velocity fields can be directly deduced along
the same lines as in previous computation. Besides their own interest for
turbulence, Kolmogorov’s ideas on intermittency have inspired many further
developments (like Mandelbrot’s cascades [20] or the Parisi and Frisch mul-
tifractal formalism [21]) that are still at the heart of active research in many
fields of applied science and mathematics.

The quantitative similarity between turbulence and finance was first sug-
gested by Ghashghaie et al. [25] who directly checked the relevance of (12) on
high frequency FX rate data. These authors suggested that the analog of the
energy cascade in turbulence could be an “information” cascade from large
time periods to small ones. However, this notion is rather fuzzy and there is
still no explicit model where a causal information cascade can be constructed
and given a precise meaning (see also the discussion in the conclusion). The
empirical study of [25] has however been supported by many other works, in
particular by the multifractal scaling analysis described above. The analogy
can be summarized in the following table:
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Turbulence (Euler) Finance
δvl : Velocity increment at scale � rτ : Return at time scale τ
e	: Local energy dissipation rate σ2

	 : Local volatility
Kolmogorov 1941 model: δv	 ∼ �1/3 Bachelier 1900 model: rτ ∼ τ1/2

δv	 = e
1/3
l �1/3ε: Kolmogorov hypothesis rτ = σ	ε: Stochastic volatility model

Kolmogorov 1962 energy cascade Log-normal volatility cascade
⇒ Intermittency ⇒ Multifractality

Let us now discuss how the multifractal properties of asset returns and
the framework of cascade models can lead to an explicit dynamical model for
financial time series.

4 The Multifractal Random Walk

The cascade picture assumes that the volatility can be constructed as a pro-
duct of random variables associated with different time scales. In the previous
section, we exclusively focused on return probability distribution functions
(mono-variate laws) and scaling laws associated with such models. Explicit
constructions of stochastic processes whose marginals satisfy a random mul-
tiplicative rule were first introduced by Mandelbrot [20]. They are known as
Mandelbrot’s cascades or random multiplicative cascades. The construction
of a Mandelbrot cascade, illustrated in Fig. 5, always involves a discrete scale
ratio s (generally s = 1/2). One begins with the volatility at the coarsest
scale and proceeds in a recursive manner to finer resolution: The n-th step of
the volatility construction corresponds to scale 2−n and is obtained from the
(n−1)-th step by multiplication with a positive random process W , the max
of which does not depend on n. More precisely, the volatility in each sub-
interval is the volatility of its parent interval multiplied by an independent
copy of W .

Mandelbrot cascades are considered to be the paradigm of multifractal
processes. They have been extensively used for modeling scale-invariance pro-
perties in many fields, in particular statistical finance [27,28]. However, this
class of models possess several drawbacks: (i) they involve a preferred scale
ratio s, (ii) they are not stationary and (iii) they violate causality. In that re-
spect, it is difficult to see how such models could arise from a realistic (agent
based) description of financial markets.

Recently, Bacry, Muzy and Delour (BMD) [22,23] introduced a model that
does not possess any of the above limitations and captures the essential fea-
tures of cascades through their correlation structure. Let us first show, from a
general point of view, how volatility fluctuations and correlations can induce
multiscaling. We will then discuss the BMD model where multifractality is
indeed exact, and for which ζq can be computed for all q.

As mentioned in Sect. 2, the empirical volatility correlation function de-
cays slowly, as a power law. More precisely, if the correlation function of the
square returns δx2 (which serves as a proxy for the true volatility) decays as
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Fig. 5. Multiplicative construction of a Mandelbrot cascade. One starts at the
coarsest scale T and constructs the volatility fluctuations at fine scales using a
recursive multiplication rule. The variables W are independent copies of the same
random variable

τ−ν with ν < 1, it is quite easy to obtain explicitly the fourth moment of the
price return for large τ :

M4(τ) ≈ σ4τ2 (1 +Aτ−ν
)
, (15)

where Ameasures the amplitude of the long range part of the square volatility
correlation. The fourth moment of the price difference therefore behaves as
the sum of two power-laws, not as a unique power-law as in the case of a
multifractal process. However, when ν is small and in a restricted range of
τ , this sum of two power-laws is indistinguishable from a unique power-law
with an effective exponent ζ4,eff somewhere between 2 and 2 − ν; therefore
ζ4,eff < 2ζ2 = 2.

In the BMD model, the key ingredient is the volatility correlation shape
that mimics cascade features. Indeed, as remarked in ref. [26], the tree like
structure underlying a Mandelbrot cascade implies that the volatility loga-
rithm covariance decreases very slowly, as a logarithm function, i.e.,

〈ln(στ (t) ln(στ (t+∆t)〉 − 〈ln(στ (t)〉2 = C0 − λ2 ln(∆t+ τ). (16)

This equation can be seen as a generalization of the Kolmogorov equation (12)
that describes only the behavior of the log-volatility variance (corresponding
to the log-dissipation variance in Kolmogorov’s paper). It is important to note
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that such a logarithmic behaviour of the covariance has indeed been observed
for empirically estimated log-volatilities in various stock market data [26]1.

The BMD model involves (16) within the continuous time limit of a di-
screte stochastic volatility model. One first discretizes time in units of an
elementary time step τ0 and sets t ≡ iτ0. The volatility σi at “time” i is
a log-normal random variable such that σi = σ0 exp ξi, where the Gaussian
process ξi has the same covariance as in (16):

〈ξi〉 = −λ2 ln
(
T

τ0

)
≡ µ0; 〈ξiξj〉 − µ2

0 = λ2 ln
(
T

τ0

)
− λ2 ln(|i− j| + 1),

(17)

for |i − j|τ0 ≤ T . Here T is a large cut-off time scale beyond which the
volatility correlation vanishes. In the above equation, the brackets stand for
the mathematical expectation. The choice of the mean value µ0 is such that
〈σ2〉 = σ2

0 . As before, the parameter λ2 measures the intensity of volatility
fluctuations (called in the finance jargon the ‘vol of the vol’), and corresponds
to the intermittency parameter.

Now, the price returns are constructed as:

x ((i+ 1)τ0) − x (iτ0) = rτ0(i) ≡ σiεi = σ0e
ξiεi, (18)

where the εi are a set of independent, identically distributed random variables
of zero mean and variance equal to τ0. One also assumes that the εi and the ξi
are independent (but see [32]). In the original BMD model, εi’s are Gaussian,
and the continuous time limit τ0 = dt → 0 is taken. Since x = ln p, where p
is the price, the exponential of a sample path of the BMD model plotted in
Fig. 6a can be compared to the real price charts of Figs. 1a and 3a.

The multifractal scaling properties of this model can be computed expli-
citly. Moreover, using the properties of multivariate Gaussian variables, one
can get closed expressions for all even moments Mq(τ) (q = 2k). In the case
q = 2 one trivially finds:

M2(τ = �τ0) = σ2
0 �τ0 ≡ σ2

0τ, (19)

independently of λ2. For q �= 2, one has to distinguish between the cases
qλ2 < 1 and qλ2 > 1. For qλ2 < 1, the corresponding moments are finite,
and one finds, in the scaling region τ0 	 τ ≤ T , a true multifractal behaviour
[22,23]:

Mq(τ) = Aqτ
ζq (20)

where
{
ζq = q(1/2 + λ2) − q2λ2/2
Aq = T q/2σq(q − 1)!!

∏q/2−1
k=0

Γ (1−2λ2k)2Γ (1−2λ2(k+1))
Γ (2−2λ2(q/2+k−1))Γ (1−2λ2) for q even

(21)

1 In fact, other functional forms, motivated by some simple agent based models,
are also possible [35].
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Fig. 6. Multifractal properties of BMD model. a Exponential of a BMD process
realization. The parameters have been adjusted in order to mimic the features of
S&P 500 index reported in Fig. 4. b Multifractal scaling of BMD return moments
for q = 1, 2, 3, 4, 5. c Estimated ζq spectrum (◦) compared with the log-normal
analytical expression (21) (solid line). d Evolution of the return probability distri-
butions across scales, from nearly Gaussian at coarse scale (bottom) to fat tailed
law at small scales (top). e Log-volatility covariance as a function of the logarithm
of the lag τ

For qλ2 > 1, on the other hand, the moments diverge, suggesting that the
unconditional distribution of x(t + τ) − x(t) has power law tails with an
exponent µ = 1/λ2 (possibly multiplied by some slow function). These mul-
tifractal scaling properties that BMD processes are numerically checked in
Figs. 6a and 6b, where one recovers the same features as in Fig. 4 for the
S&P 500 index. Since volatility correlations are absent for τ � T , the scaling
becomes that of a standard random walk, for which ζq = q/2. The correspon-
ding distribution of price returns thus becomes progressively Gaussian. An
illustration of the progressive deformation of the distributions as τ increases
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in the BMD model is reported in Fig. 6c. This figure can be directly compa-
red to Fig. 3. As shown in Fig. 6e, this model also reproduces the empirically
observed logarithmic covariance of log-volatility (16). This functional form,
introduced at a “microscopic” level (at scale τ0 → 0), is therefore stable
across finite time scales τ .

To summarize, the BMD process is attractive for modeling financial time
series since it reproduces most “stylized facts” reviewed in Sect. 2 and has
exact multifractal properties as described in Sect. 3. Moreover, this model has
stationary increments, does not exhibit any particular scale ratio and can be
formulated in a purely causal way: the log volatility ξi can be expressed as
a sum over “past” random shocks, with a memory kernel that decays as the
inverse square root of the time lag [36]. It would be interesting to give a
precise economic justification to this causal construction.

It is useful to relate the above results of the BMD model to the gene-
ral discussion relating volatility correlations and multifractality, given at the
beginning of this section. It is easy to show that the correlation function of
the square returns is, within the BMD model, proportional to (T/τ)ν with
ν ≡ 4λ2. We can choose λ small enough such that ν < 1 and thus place
our analysis in the regime discussed above, where (15) holds. The interesting
point here is that for large T , the constant A appearing in (15) is also large:
A = T ν/(2−ν)(1−ν). Therefore, the second term in (15) is dominant whene-
ver τ 	 T . In the regime τ0 	 τ 	 T , one indeed finds a unique power-law
for M4(τ), with ζ4 ≡ 2 − ν = 2(1 − 2λ2), in agreement with the general
expression of ζq in the BMD model.

Let us end this section with a few remarks.

• Direct studies of the empirical distribution of the volatility is indeed
compatible with the assumption of log-normality, although an inverse
gamma distribution also fits the data very well [40,2].

• One of the predictions of the BMD model is the equality between the
intermittency coefficient estimated from the curvature of the ζq function
and the slope of the log-volatility covariance logarithmic decrease. The
direct study of various empirical log-volatility correlation functions shows
that they can indeed be fit by a logarithm of the time lag, with a slope
that is roughly equal to the corresponding intermittency coefficient λ2.
These empirical studies also suggest that the integral time T is around
one or few years.

• On the other hand, the empirical tail of the distribution of price incre-
ments is described by a power-law with an exponent µ in the range 3 − 5
[5,6,1], much smaller than the value µ = 1/λ2 ∼ 10−100 predicted by the
BMD model. This suggests that the random variable ε itself is non Gaus-
sian and further fattens the tails. Other laws for the stochastic volatility
could also lead to fatter tails [24].

• Finally, one can extend the above multifractal model to account for a
skewed distribution of returns and the return-volatility correlations men-
tioned in Sect. 2 (see also [14]). In the BMD model, all the odd moments
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of the process vanish by symmetry. A simple possibility, recently investi-
gated in [32], is to correlate negatively the variable ξi with ‘past’ values
of the variables εj , j < i, through a kernel that decays as a power-law.
In this case, the multifractality properties of the model are preserved,
though the expression for ζq is different for q even and q odd.

5 Conclusions

Kolmogorov’s pioneering work on the scaling properties of fully developed
turbulence has been the seed for considerable theoretical developments and
has influenced many domains, far beyond the statistical theory of turbulence.
In this paper, we discussed a somewhat unexpected outcome of Kolmogorov’s
ideas: models for financial time series. The interest of the physics community
in financial economics problems has grown considerably over the past few
years. Using scaling concepts and (multi-)fractal analysis, physicists (but not
only physicists [37,28]) have shed new light on financial time series analysis.
As we have emphasized, the analogy between the apparently remote fields
of turbulence and finance has led to very interesting results; many exciting
developments can still be expected. Applications of the BMD model (or some
other related model) to risk management, volatility prediction [37] and option
pricing [32] have already been considered. The slow relaxation of the volatility
after a shock can also be accurately modeled within the BMD framework [36].
Let us mention that the BMD model, originally designed to reproduce price
fluctuations, has found an application “back” in Lagrangian turbulence [33].
It also has deep connections with the theory of disordered systems [38].

The description of financial data using cascade-like ideas is however still
only phenomenological. An important theoretical issue is to understand the
underlying mechanisms that can give rise to such a remarkable structure of
the volatility correlations. One path could be to justify why the volatility
response to a shock decays as the inverse square root of time, a property
implying the logarithmic decay of the correlation function which is at the
heart of multifractal scaling. Another possibility, discussed in [35], is that
although a logarithmic form provides a very good fit to the data, it does not
exclude other functional forms. For example, a stretched exponential form
actually fits the data equally well, and is suggested by a simple model where
the activity of agents is subordinated to a random walk signal [35]. Finally,
it is interesting to mention that direct evidence of different time scales in the
trading activity has been presented in [39].

Let us conclude by quoting Kolmogorov himself when he explained his
interest for turbulence [34]:

“...It was clear to me from the very beginning that the main mathema-
tical instrument in this study must be the theory of random functions
of several variables (random fields) which had only then originated.
Moreover, it soon became clear to me that there was no chance of



244 J.-P. Bouchaud and J.-F. Muzy

developing a purely closed mathematical theory, it was necessary to
use some hypotheses based on the results of the treatment of the ex-
perimental data...”

This sentence clearly applies equally well to statistical finance.
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